910 resultados para major histocompatibility complex
Resumo:
Tolerance induction by thymic epithelium induces a state of so-called "split tolerance," characterized in vivo by tolerance and in vitro by reactivity to a given thymically expressed antigen. Using a model major histocompatibility complex class I antigen, H-2Kb (Kb), three mechanisms of thymic epithelium-induced tolerance were tested: induction of tolerance of tissue-specific antigens exclusively, selective inactivation of T helper cell-independent cytotoxic T lymphocytes, and deletion of high-avidity T cells. To this end, thymic anlagen from Kb-transgenic embryonic day 10 mouse embryos, taken before colonization by cells of hemopoietic origin, were grafted to nude mice. Tolerance by thymic epithelium was not tissue-specific, since Kb-bearing skin and spleen grafts were maintained indefinitely. Only strong priming in vivo could partially overcome the tolerant state and induce rejection of some skin grafts overexpressing transgenic Kb. Furthermore, the hypothesis that thymic epithelium selectively inactivates those T cells that reject skin grafts in a T helper-independent fashion could not be supported. Thus, when T-cell help was provided by a second skin graft bearing an additional major histocompatibility complex class II disparity, tolerance to the Kb skin graft was not broken. Finally, direct evidence could be obtained for the avidity model of thymic epithelium-induced negative selection, using Kb-specific T-cell receptor (TCR) transgenic mice. Thymic epithelium-grafted TCR transgenic mice showed a selective deletion of those CD8+ T cells with the highest density of the clonotypic TCR. These cells presumably represent the T cells with the highest avidity for Kb. We conclude that split tolerance induced by thymic epithelium was mediated by the deletion of those CD8+ T lymphocytes that have the highest avidity for antigen.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
T-cell receptors (TCRs) recognize peptide bound within the relatively conserved structural framework of major histocompatibility complex (MHC) class I or class II molecules but can discriminate between closely related MHC molecules. The structural basis for the specificity of ternary complex formation by the TCR and MHC/peptide complexes was examined for myelin basic protein (MBP)-specific T-cell clones restricted by different DR2 subtypes. Conserved features of this system allowed a model for positioning of the TCR on DR2/peptide complexes to be developed: (i) The DR2 subtypes that presented the immunodominant MBP peptide differed only at a few polymorphic positions of the DR beta chain. (ii) TCR recognition of a polymorphic residue on the helical portion of the DR beta chain (position DR beta 67) was important in determining the MHC restriction. (iii) The TCR variable region (V) alpha 3.1 gene segment was used by all of the T-cell clones. TCR V beta usage was more diverse but correlated with the MHC restriction--i.e., with the polymorphic DR beta chains. (iv) Two clones with conserved TCR alpha chains but different TCR beta chains had a different MHC restriction but a similar peptide specificity. The difference in MHC restriction between these T-cell clones appeared due to recognition of a cluster of polymorphic DR beta-chain residues (DR beta 67-71). MBP-(85-99)-specific TCRs therefore appeared to be positioned on the DR2/peptide complex such that the TCR beta chain contacted the polymorphic DR beta-chain helix while the conserved TCR alpha chain contacted the nonpolymorphic DR alpha chain.
Resumo:
In the tumor-bearing host, T cells invariably fail to induce a clinically significant antitumor immune response. Although model systems support the existence of tumor peptide antigens, the molecular interactions critical for antigen presentation by the tumor cell remain unresolved. Here, we demonstrate that human follicular lymphoma cells are highly inefficient at presenting alloantigen despite their strong expression of major histocompatibility complex and low-to-intermediate expression of some adhesion and B7 costimulatory molecules. Activation of follicular lymphoma cells via CD40 induces or up-regulates both adhesion and B7 costimulatory molecules essential to repair this defect. More importantly, once primed, alloreactive T cells efficiently recognize unstimulated follicular lymphoma cells. Thus, correction of defective tumor immunity requires not only expression of major histocompatibility complex but also sufficient expression of multiple adhesion and costimulatory molecules.
Resumo:
The invariant chain (Ii) prevents binding of ligands to major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum and during intracellular transport. Stepwise removal of the Ii in a trans-Golgi compartment renders MHC class II molecules accessible for peptide loading, with CLIP (class II-associated Ii peptides) as the final fragment to be released. Here we show that CLIP can be subdivided into distinct functional regions. The C-terminal segment (residues 92-105) of the CLIP-(81-105) fragment mediates inhibition of self- and antigenic peptide binding to HLA-DR2 molecules. In contrast, the N-terminal segment CLIP-(81-98) binds to the Staphylococcus aureus enterotoxin B contact site outside the peptide-binding groove on the alpha 1 domain and does not interfere with peptide binding. Its functional significance appears to lie in the contribution to CLIP removal: the dissociation of CLIP-(81-105) is characterized by a fast off-rate, which is accelerated at endosomal pH, whereas in the absence of the N-terminal CLIP-(81-91), the off-rate of C-terminal CLIP-(92-105) is slow and remains unaltered at low pH. Mechanistically, the N-terminal segment of CLIP seems to prevent tight interactions of CLIP side chains with specificity pockets in the peptide-binding groove that normally occurs during maturation of long-lived class II-peptide complexes.
Resumo:
We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.
Resumo:
The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.
Resumo:
To generate a potent cell-mediated immune response, at least two signals are required by T cells. One is engagement of the T-cell receptor with peptide-bearing major histocompatibility complex molecules. The other signal can be delivered by various molecules on the antigen-presenting cell, such as B7-1 (CD80). Many tumor cells escape immune recognition by failing to express these costimulatory molecules. Transfection of the B7 gene into some murine tumor cells allows for immune recognition and subsequent rejection of the parental tumor. We have studied an alternative approach for the introduction of B7-1 onto the surface of tumor cells. This method involves purified glycosyl-phosphatidylinositol (GPI)-anchored proteins which can spontaneously incorporate their lipid tail into cell membranes. We have created and purified a GPI-anchored B7-1 molecule (called GPI-B7) which is able to bind its cognate ligand, CD28, and incorporate itself into tumor cell membranes after a short incubation. Tumor cells that have been reconstituted with GPI-B7 can provide the costimulatory signal needed to stimulate T cells. These findings suggest an approach for the introduction of new proteins onto cell membranes to create an effective tumor vaccine for potential use in human immunotherapy.
Resumo:
Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.
Resumo:
We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.
Resumo:
A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.
Resumo:
Although T cells bearing gamma delta T-cell receptors have long been known to be present in the epithelial lining of many organs, their specificity and function remain elusive. In the present study, we examined the intestinal epithelia of T-cell-receptor mutant mice, which were deficient in either gamma delta T cells or alpha beta T cells, and of normal littermates. The absence of gamma delta T cells was associated with a reduction in epithelial cell turnover and a downregulation of the expression of major histocompatibility complex class II molecules. No such effects were observed in alpha beta T-cell-deficient mice. These findings indicate that intraepithelial gamma delta T cells regulate the generation and differentiation of intestinal epithelial cells.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.
Resumo:
Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.
Resumo:
Odortypes--namely, body odors that distinguish one individual from another on the basis of genetic polymorphism at the major histocompatibility complex and other loci--are a fundamental element in the social life and reproductive behavior of the mouse, including familial imprinting, mate choice, and control of early pregnancy. Odortypes are strongly represented in urine. During mouse pregnancy, an outcrossed mother's urine acquires fetal major histocompatibility complex odortypes of paternal origin, an observation that we took as the focus of a search for odortypes in humans, using a fully automated computer-programmed olfactometer in which trained rats are known to distinguish precisely the odortypes of another species. Five women provided urine samples before and after birth, which in each case appropriately trained rats were found to distinguish in the olfactometer. Whether this olfactory distinction of mothers' urine before and after birth reflects in part the odortype and hence genotype of the fetus, and not just the state of pregnancy per se, was tested in a second study in which each mother's postpartum urine was mixed either with urine from her own infant or with urine of a different, same-aged infant. Responses of trained rats were more positive with respect to the former (congruous) mixtures than to the latter (incongruous) mixtures, implying that, as in the mouse, human fetal odortypes of paternal genomic origin are represented in the odortype of the mother, doubtless by circulatory transfer of the pertinent odorants.