970 resultados para machine fault diagnosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gulf of Cadiz, as part of the Azores-Gibraltar plate boundary, is recognized as a potential source of big earthquakes and tsunamis that may affect the bordering countries, as occurred on 1 November 1755. Preparing for the future, Portugal is establishing a national tsunami warning system in which the threat caused by any large-magnitude earthquake in the area is estimated from a comprehensive database of scenarios. In this paper we summarize the knowledge about the active tectonics in the Gulf of Cadiz and integrate the available seismological information in order to propose the generation model of destructive tsunamis to be applied in tsunami warnings. The fault model derived is then used to estimate the recurrence of large earthquakes using the fault slip rates obtained by Cunha et al. (2012) from thin-sheet neotectonic modelling. Finally we evaluate the consistency of seismicity rates derived from historical and instrumental catalogues with the convergence rates between Eurasia and Nubia given by plate kinematic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT - Tinea pedis and onychomycosis are two rather diverse clinical manifestations of superficial fungal infections, and their etiologic agents may be dermatophytes, non-dermatophyte moulds or yeasts. This study was designed to statistically describe the data obtained as results of analysis conducted during a four year period on the frequency of Tinea pedis and onychomycosis and their etiologic agents. A questionnaire was distributed from 2006 to 2010 and answered by 186 patients, who were subjected to skin and/or nail sampling. Frequencies of the isolated fungal species were cross-linked with the data obtained with the questionnaire, seeking associations and predisposing factors. One hundred and sixty three fungal isolates were obtained, 24.2% of which composed by more than one fungal species. Most studies report the two pathologies as caused primarily by dermatophytes, followed by yeasts and lastly by non-dermatophytic moulds. Our study does not challenge this trend. We found a frequency of 15.6% of infections caused by dermatophytes (with a total of 42 isolates) of which T. rubrum was the most frequent species (41.4%). There was no significant association (p >0.05) among visible injury and the independent variables tested, namely age, gender, owning pet, education, swimming pools attendance, sports activity and clinical information. Unlike other studies, the variables considered did not show the expected influence on dermatomycosis of the lower limbs. It is hence necessary to conduct further studies to specifically identify which variables do in fact influence such infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies against gliadin are used to detect celiac disease (CD) in patients. An electrochemical immunosensor for the voltammetric detection of human anti-gliadin antibodies (AGA) IgA and AGA IgG in real serum samples is proposed. The transducer surface consists of screen-printed carbon electrodes modified with a carbon nanotube/gold nanoparticle hybrid system, which provides a very useful surface for the amplification of the immunological interactions. The immunosensing strategy is based on the immobilization of gliadin, the antigen for the autoantibodies of interest, onto the nanostructured surface. The antigen–antibody interaction is recorded using alkaline phosphatase labeled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions (3-IP/Ag+) was used as the substrate. The analytical signal is based on the anodic redissolution of the enzymatically generated silver by cyclic voltammetry. The electrochemical behavior of this immunosensor was carefully evaluated assessing aspects as sensitivity, non-specific binding and matrix effects, and repeatability and reproducibility. The results were supported with a commercial ELISA test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article had the purpose of commenting on studies on polypharmacy in the elderly, focusing on diagnosis and control. Polypharmacy is defined as the use of a number of medications at the same time and the use of additional drugs to correct drug adverse effects. The fact that the elderly take more medications for the treatment of several diseases makes them more susceptible to the occurrence of adverse reactions. Prophylactic actions such as balanced prescriptions are vital to reduce the incidence of these reactions and prevent longer hospital stay, increased costs and aggravation of the elderly health condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os sistemas Computer-Aided Diagnosis (CAD) auxiliam a deteção e diferenciação de lesões benignas e malignas, aumentando a performance no diagnóstico do cancro da mama. As lesões da mama estão fortemente correlacionadas com a forma do contorno: lesões benignas apresentam contornos regulares, enquanto as lesões malignas tendem a apresentar contornos irregulares. Desta forma, a utilização de medidas quantitativas, como a dimensão fractal (DF), pode ajudar na caracterização dos contornos regulares ou irregulares de uma lesão. O principal objetivo deste estudo é verificar se a utilização concomitante de 2 (ou mais) medidas de DF – uma tradicionalmente utilizada, a qual foi designada por “DF de contorno”; outra proposta por nós, designada por “DF de área” – e ainda 3 medidas obtidas a partir destas, por operações de dilatação/erosão e por normalização de uma das medidas anteriores, melhoram a capacidade de caracterização de acordo com a escala BIRADS (Breast Imaging Reporting and Data System) e o tipo de lesão. As medidas de DF (DF contorno e DF área) foram calculadas através da aplicação do método box-counting, diretamente em imagens de lesões segmentadas e após a aplicação de um algoritmo de dilatação/erosão. A última medida baseia-se na diferença normalizada entre as duas medidas DF de área antes e após a aplicação do algoritmo de dilatação/erosão. Os resultados demonstram que a medida DF de contorno é uma ferramenta útil na diferenciação de lesões, de acordo com a escala BIRADS e o tipo de lesão; no entanto, em algumas situações, ocorrem alguns erros. O uso combinado desta medida com as quatro medidas propostas pode melhorar a classificação das lesões.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To diagnose iron deficiency anemia in children. METHODS: The study was conducted with a sample of 301 children aged six to 30 months attending public daycare centers in the city of Recife, Northeast Brazil, in 2004. The diagnoses of anemia were based on a combination of different hematological and biochemical parameters: hemoglobin, mean corpuscular volume, ferritin, C-reactive protein, transferrin saturation and transferrin receptor. The chi-square test and ANOVA were used in the statistical analysis. RESULTS: Of all children studied, 92.4% had anemia (Hb <110 g/L) and 28.9% had moderate/severe anemia (Hb <90 g/L). Lower levels of hemoglobin were found in children aged 6-17 months. Iron deficiency was found in 51.5% of children using ferritin (<12 μg/L) as parameter. Taking into consideration the combination of hemoglobin level, ferritin and transferrin receptor, 58.1% had anemia with iron deficiency, 34.2% had anemia without iron deficiency and 2.3% had iron deficiency without anemia. Mean ferritin concentration was significantly higher in children with high C-reactive protein when compared with those with normal levels (22.1 vs. 14.8 µg/L). CONCLUSIONS: The use of several biochemical and hematological parameters allowed to diagnosing iron deficiency anemia in two thirds of children, suggesting a need to identify other determinants of anemia without iron deficiency.