986 resultados para lyn kinase, oligodendrocytes, brain, myelination
Resumo:
Nicotine, the addictive compound of tobacco products, exerts its effects in the brain by binding to neuronal acetylcholine nicotinic receptors (nAChRs). The aim of the present study was to increase the knowledge of nicotine s complex effects, the focus being on homomeric alpha7-nAChRs that are widely expressed in the brain. Nicotinic regulation of differential signalling molecules including transcriptional regulators was also studied. We found that the number of alpha7-nAChRs is increased in specific brain regions in mice, in a time-dependent manner after chronic oral nicotine administration. Our results suggest that in addition to alpha4beta2-nAChRs, the other major nAChR subtype expressed in the brain, the number of alpha7-nAChRs is affected by chronic presence of nicotine. We suggest that when studying the long-term effects of nicotine, the duration on administration is of great importance. Next, we observed that nicotine exposure induces accumulation of cAMP in cell cultures expressing nAChRs. Furthermore, nicotine-induced alpha7-nAChR upregulation was potentiated by treatments enhancing cAMP-signalling, suggesting a role for cAMP in the upregulation process. Protein kinase C (PKC) was found essential for the basal regulation of alpha7-nAChR number. The nicotine-evoked alpha7-nAChR upregulation could be further increased by PKC overexpression. Thirdly, the effects of nicotine on dopamine and cAMP regulated phosphoprotein (DARPP-32) were characterised in rat brain. The results show that DARPP-32 is regulated by both acute and long-term nicotine treatment in the striatal subdivisions. The effect of acute nicotine is dose-dependent and the three striatal regions display differential sensitivities to nicotine. Chronic nicotine is also able to regulate DARPP-32 signalling with prominent effect seen in the nucleus accumbens (NAc), suggesting a role for DARPP-32 in the mediation of long-term effects of nicotine. Finally, the regulation of transcription factors Elk-1 and FosB/deltaFosB by nicotine was investigated. We found that Elk-1 is activated by acute nicotine selectively in the NAc core and hippocampal area CA1, whereas acute nicotine does not affect FosB/deltaFosB. Long-term intermittent or continuous nicotine increases the level of total Elk-1 in the same brain regions as acute nicotine. FosB/deltaFosB is also affected by chronic nicotine. Thus, similarly to other drugs of abuse, nicotine regulates transcriptional regulators Elk-1 and FosB/deltaFosB. These results bring further support for a common mechanism underlying the development of addiction. Nicotine s positive effects on learning and memory might involve the transcription factor Elk-1 based on the changes seen in the hippocampus, the key area in cognitive functions.
Resumo:
Epigenetics plays a crucial role in schizophrenia susceptibility. In a previous study, we identified over 4500 differentially methylated sites in prefrontal cortex (PFC) samples from schizophrenia patients. We believe this was the first genome-wide methylation study performed on human brain tissue using the Illumina Infinium HumanMethylation450 Bead Chip. To understand the biological significance of these results, we sought to identify a smaller number of differentially methylated regions (DMRs) of more functional relevance compared with individual differentially methylated sites. Since our schizophrenia whole genome methylation study was performed, another study analysing two separate data sets of post-mortem tissue in the PFC from schizophrenia patients has been published. We analysed all three data sets using the bumphunter function found in the Bioconductor package minfi to identify regions that are consistently differentially methylated across distinct cohorts. We identified seven regions that are consistently differentially methylated in schizophrenia, despite considerable heterogeneity in the methylation profiles of patients with schizophrenia. The regions were near CERS3, DPPA5, PRDM9, DDX43, REC8, LY6G5C and a region on chromosome 10. Of particular interest is PRDM9 which encodes a histone methyltransferase that is essential for meiotic recombination and is known to tag genes for epigenetic transcriptional activation. These seven DMRs are likely to be key epigenetic factors in the aetiology of schizophrenia and normal brain neurodevelopment.
Resumo:
In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.
Resumo:
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Resumo:
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.
Resumo:
The concept of vascular cognitive impairment (VCI) covers a wide spectrum of cognitive dysfunctions related to cerebrovascular disease. Among the pathophysiological determinants of VCI are cerebral stroke, white matter lesions and brain atrophy, which are known to be important risk factors for dementia. However, the specific mechanisms behind the brain abnormalities and cognitive decline are still poorly understood. The present study investigated the neuropsychological correlates of particular magnetic resonance imaging (MRI) findings, namely, medial temporal lobe atrophy (MTA), white matter hyperintensities (WMH), general cortical atrophy and corpus callosum (CC) atrophy in subjects with cerebrovascular disease. Furthermore, the cognitive profile of subcortical ischaemic vascular disease (SIVD) was examined. This study was conducted as part of two large multidisciplinary study projects, the Helsinki Stroke Aging Memory (SAM) Study and the multinational Leukoaraiosis and Disability (LADIS) Study. The SAM cohort consisted of 486 patients, between 55 and 85 years old, with ischaemic stroke from the Helsinki University Hospital, Helsinki, Finland. The LADIS Study included a mixed sample of subjects (n=639) with age-related WMH, between 65 and 84 years old, gathered from 11 centres around Europe. Both studies included comprehensive clinical and neuropsychological assessments and detailed brain MRI. The relationships between the MRI findings and the neuropsychological test performance were analysed by controlling for relevant confounding factors such as age, education and other coexisting brain lesions. The results revealed that in elderly patients with ischaemic stroke, moderate to severe MTA was specifically related to impairment of memory and visuospatial functions, but mild MTA had no clinical relevance. Instead, WMH were primarily associated with executive deficits and mental slowing. These deficits mediated the relationship between WMH and other, secondary cognitive deficits. Cognitive decline was best predicted by the overall degree of WMH, whereas the independent contribution of regional WMH measures was low. Executive deficits were the most prominent cognitive characteristic in SIVD. Compared to other stroke patients, the patients with SIVD also presented more severe memory deficits, which were related to MTA. The cognitive decline in SIVD occurred independently of depressive symptoms and, relative to healthy control subjects, it was substantial in severity. In stroke patients, general cortical atrophy also turned out to be a strong predictor of cognitive decline in a wide range of cognitive domains. Moreover, in elderly subjects with WMH, overall CC atrophy was related to reduction in mental speed, while anterior CC atrophy was independently associated with frontal lobe-mediated executive functions and attention. The present study provides cross-sectional evidence for the involvement of WMH, MTA, general cortical atrophy and CC atrophy in VCI. The results suggest that there are multifaceted pathophysiological mechanisms behind VCI in the elderly, including both vascular ischaemic lesions and neurodegenerative changes. The different pathological changes are highly interrelated processes and together they may produce cumulative effects on cognitive decline.
Resumo:
Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.
Resumo:
Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.
Resumo:
Selective attention refers to the process in which certain information is actively selected for conscious processing, while other information is ignored. The aim of the present studies was to investigate the human brain mechanisms of auditory and audiovisual selective attention with functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). The main focus was on attention-related processing in the auditory cortex. It was found that selective attention to sounds strongly enhances auditory cortex activity associated with processing the sounds. In addition, the amplitude of this attention-related modulation was shown to increase with the presentation rate of attended sounds. Attention to the pitch of sounds and to their location appeared to enhance activity in overlapping auditory-cortex regions. However, attention to location produced stronger activity than attention to pitch in the temporo-parietal junction and frontal cortical regions. In addition, a study on bimodal attentional selection found stronger audiovisual than auditory or visual attention-related modulations in the auditory cortex. These results were discussed in light of Näätänen s attentional-trace theory and other research concerning the brain mechanisms of selective attention.
Resumo:
This thesis examines brain networks involved in auditory attention and auditory working memory using measures of task performance, brain activity, and neuroanatomical connectivity. Auditory orienting and maintenance of attention were compared with visual orienting and maintenance of attention, and top-down controlled attention was compared to bottom-up triggered attention in audition. Moreover, the effects of cognitive load on performance and brain activity were studied using an auditory working memory task. Corbetta and Shulman s (2002) model of visual attention suggests that what is known as the dorsal attention system (intraparietal sulcus/superior parietal lobule, IPS/SPL and frontal eye field, FEF) is involved in the control of top-down controlled attention, whereas what is known as the ventral attention system (temporo-parietal junction, TPJ and areas of the inferior/middle frontal gyrus, IFG/MFG) is involved in bottom-up triggered attention. The present results show that top-down controlled auditory attention also activates IPS/SPL and FEF. Furthermore, in audition, TPJ and IFG/MFG were activated not only by bottom-up triggered attention, but also by top-down controlled attention. In addition, the posterior cerebellum and thalamus were activated by top-down controlled attention shifts and the ventromedial prefrontal cortex (VMPFC) was activated by to-be-ignored, but attention-catching salient changes in auditory input streams. VMPFC may be involved in the evaluation of environmental events causing the bottom-up triggered engagement of attention. Auditory working memory activated a brain network that largely overlapped with the one activated by top-down controlled attention. The present results also provide further evidence of the role of the cerebellum in cognitive processing: During auditory working memory tasks, both activity in the posterior cerebellum (the crus I/II) and reaction speed increased when the cognitive load increased. Based on the present results and earlier theories on the role of the cerebellum in cognitive processing, the function of the posterior cerebellum in cognitive tasks may be related to the optimization of response speed.