919 resultados para lumbar disk hernia
Resumo:
Lumbar spinal stenosis is a frequent indication for spinal surgery. The predictive quality of treadmill testing and MRI for diagnostic verification is not yet clearly defined. Aim of the current study was to assess correlations between treadmill testing and MRI findings in the lumbar spine. Twenty-five patients with lumbar spinal stenosis were prospectively examined. Treadmill tests were performed and the area of the dural sac and neuroforamina was examined with MRI for the narrowest spinal segment. VAS and ODI were used for clinical assessment. The median age of the patients was 67 years. In the narrowest spinal segment the median area of the dural sac was 91 mm(2). The median ODI was 66 per cent. The median walking distance in the treadmill test was 70 m. The distance reached in the treadmill test correlated with the area of the dural sac (Spearman's rho = 0.53) and ODI (rho = -0.51), but not with the area of the neuroforamina and VAS. The distance reached in the treadmill test predicts the grade of stenosis in MRI but has a limited diagnostic importance for the level of clinical symptoms in lumbar spinal stenosis.
Resumo:
BACKGROUND: Chronic pain is an important outcome variable after inguinal hernia repair that is generally not assessed by objective methods. The aim of this study was to objectively investigate chronic pain and hypoesthesia after inguinal hernia repair using three types of operation: open suture, open mesh, and laparoscopic. METHODS: A total of 96 patients were included in the study with a median follow-up of 4.7 years. Open suture repair was performed in 40 patients (group A), open mesh repair in 20 patients (group B), and laparoscopic repair in 36 patients (group C). Hypoesthesia and pain were assessed using von Frey monofilaments. Quality of life was investigated with Short Form 36. RESULTS: Pain occurring at least once a week was found in 7 (17.5%) patients of group A, in 5 (25%) patients of group B, and in 6 (16.6%) patients of group C. Area and intensity of hyposensibility were increased significantly after open nonmesh and mesh repair compared to those after laparoscopy (p = 0.01). Hyposensibility in patients who had laparoscopic hernia repair was significantly associated with postoperative pain (p = 0.03). Type of postoperative pain was somatic in 19 (61%), neuropathic in 9 (29%), and visceral in 3 (10%) patients without significant differences between the three groups. CONCLUSIONS: The incidence of hypoesthesia in patients who had laparoscopic hernia repair is significantly lower than in those who had open hernia repair. Hypoesthesia after laparoscopic but not after open repair is significantly associated with postoperative pain. Von Frey monofilaments are important tools for the assessment of inguinal hypoesthesia and pain in patients who had inguinal hernia repair allowing quantitative and qualitative comparison between various surgical techniques.
Resumo:
OBJECTIVE: The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. MATERIALS AND METHODS: Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n = 3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n = 5); granular calcium phosphate (n = 5); and granular calcium phosphate coated with rhBMP-2 (n = 5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. RESULTS: Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. CONCLUSIONS: The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model.
Resumo:
The definition of spinal instability is still controversial. For this reason, it is essential to better understand the difference in biomechanical behaviour between healthy and degenerated human spinal segments in vivo. A novel computer-assisted instrument was developed with the objective to characterize the biomechanical parameters of the spinal segment. Investigation of the viscoelastic properties as well as the dynamic spinal stiffness was performed during a minimally invasive procedure (microdiscectomy) on five patients. Measurements were performed intraoperatively and the protocol consisted of a dynamic part, where spinal stiffness was computed, and a static part, where force relaxation of the segment under constant elongation was studied. The repeatability of the measurement procedure was demonstrated with five replicated tests. The spinal segment tissues were found to have viscoelastic properties. Preliminary tests confirmed a decrease in stiffness after decompression surgery. Patients with non-relaxed muscles showed higher stiffness and relaxation rate compared to patients with relaxed muscles, which can be explained by the contraction and relaxation reflex of muscles under fast and then static elongation. The results show the usefulness of the biomechanical characterization of the human lumbar spinal segment to improve the understanding of the contribution of individual anatomical structures to spinal stability.
Resumo:
OBJECTIVE: To determine stiffness and load-displacement curves as a biomechanical response to applied torsion and shear forces in cadaveric canine lumbar and lumbosacral specimens. STUDY DESIGN: Biomechanical study. ANIMALS: Caudal lumbar and lumbosacral functional spine units (FSU) of nonchondrodystrophic large-breed dogs (n=31) with radiographically normal spines. METHODS: FSU from dogs without musculoskeletal disease were tested in torsion in a custom-built spine loading simulator with 6 degrees of freedom, which uses orthogonally mounted electric motors to apply pure axial rotation. For shear tests, specimens were mounted to a custom-made shear-testing device, driven by a servo hydraulic testing machine. Load-displacement curves were recorded for torsion and shear. RESULTS: Left and right torsion stiffness was not different within each FSU level; however, torsional stiffness of L7-S1 was significantly smaller compared with lumbar FSU (L4-5-L6-7). Ventral/dorsal stiffness was significantly different from lateral stiffness within an individual FSU level for L5-6, L6-7, and L7-S1 but not for L4-5. When the data from 4 tested shear directions from the same specimen were pooled, level L5-6 was significantly stiffer than L7-S1. CONCLUSIONS: Increased range of motion of the lumbosacral joint is reflected by an overall decreased shear and rotational stiffness at the lumbosacral FSU. CLINICAL RELEVANCE: Data from dogs with disc degeneration have to be collected, analyzed, and compared with results from our chondrodystrophic large-breed dogs with radiographically normal spines.
Resumo:
SWISSspine is a so-called pragmatic trial for assessment of safety and efficiency of total disc arthroplasty (TDA). It follows the new health technology assessment (HTA) principle of "coverage with evidence development". It is the first mandatory HTA registry of its kind in the history of Swiss orthopaedic surgery. Its goal is the generation of evidence for a decision by the Swiss federal office of health about reimbursement of the concerned technologies and treatments by the basic health insurance of Switzerland. During the time between March 2005 and 2008, 427 interventions with implantation of 497 lumbar total disc arthroplasties have been documented. Data was collected in a prospective, observational multicenter mode. The preliminary timeframe for the registry was 3 years and has already been extended. Data collection happens pre- and perioperatively, at the 3 months and 1-year follow-up and annually thereafter. Surgery, implant and follow-up case report forms are administered by spinal surgeons. Comorbidity questionnaires, NASS and EQ-5D forms are completed by the patients. Significant and clinically relevant reduction of low back pain VAS (70.3-29.4 points preop to 1-year postop, p < 0.0001) leg pain VAS (55.5-19.1 points preop to 1-year postop, p < 0.001), improvement of quality of life (EQ-5D, 0.32-0.73 points preop to 1-year postop, p < 0.001) and reduction of pain killer consumption was revealed at the 1-year follow-up. There were 14 (3.9%) complications and 7 (2.0%) revisions within the same hospitalization reported for monosegmental TDA; there were 6 (8.6%) complications and 8 (11.4%) revisions for bisegmental surgery. There were 35 patients (9.8%) with complications during followup in monosegmental and 9 (12.9%) in bisegmental surgery and 11 (3.1%) revisions with 1 [corrected] new hospitalization in monosegmental and 1 (1.4%) in bisegmental surgery. Regression analysis suggested a preoperative VAS "threshold value" of about 44 points for increased likelihood of a minimum clinically relevant back pain improvement. In a short-term perspective, lumbar TDA appears as a relatively safe and efficient procedure concerning pain reduction and improvement of quality of life. Nevertheless, no prediction about the long-term goals of TDA can be made yet. The SWISSspine registry proofs to be an excellent tool for collection of observational data in a nationwide framework whereby advantages and deficits of its design must be considered. It can act as a model for similar projects in other health-care domains.