935 resultados para lipoprotein A
Resumo:
One hundred forty-two women with polycystic ovary syndrome (PCOS) with an average body mass index (BMI) of 29.1 kg/m(2) and average age of 25.12 years were studied. By BMI, 30.2% were normal, 38.0% were overweight and 31.6% were obese. Thirty-one eumenorrheic women matched for BMI and age, with no evidence of hyperandrogenism, were recruited as controls. The incidence of dyslipidemia in the PCOS group was twice that of the Control group (76.1% versus 32.25%). The most frequent abnormalities were low high-density lipoprotein cholesterol (HDL-C; 57.6%) and high triglyceride (TG) (28.3%). HDL-C was significantly lower in all subgroups of women with PCOS when compared to the subgroups of normal women. No significant differences were seen in the total cholesterol (p = 0.307), low-density lipoprotein cholesterol (LDL-C; p = 0.283) and TGs (p = 0.113) levels among the subgroups. An independent effect on HDL-C was detected for glucose (p = 0.004) and fasting insulin (p = 0.01); on TG for age (p = 0.003) and homeostatic model assessment insulin resistance (p = 0.03) and on total cholesterol and LDL-C for age (p = 0.02 and p = 0.033, respectively). In conclusion, dyslipidemia is common in women with PCOS, mainly due to low HDL-C levels. BMI has a significant impact on this abnormality.
Resumo:
Objective: To determine the impact of menopause on lipid transfer from donor lipoproteins to high-density lipoproteins (HDLs)-a process that is related to the protective function of HDL-and the size of HDL particles. Method: Plasma from 22 prernenopausal and 18 postmenopausal nonobese, normolipidemic women paired for age (40-50 years) was incubated in an artificial nanoemulsion labeled with radioactive lipids. Then the HDL fraction was assessed for radioactivity; the percentage of radioactive lipids transferred from the nanoemulsion to HDL was determined; and the size of HDL particles was measured by laser light scattering. Results: There were no differences between the 2 groups in serum concentration of HDL cholesterol (61 12 mg/dL vs 61 +/- 14 mg/dL) or apolipoprotein A(1) (1.5 +/- 0.3 g/L vs 1.5 +/- 0.2 g/L); lipid transfer to HDL; or size of HDL particles (8.8 +/- 0.8 vs 9.0 +/- 0.5 nm). Conclusion: Menopause was not found to affect HDL cholesterol plasma concentration, lipid transfer to HDL, or size of HDL particles in normolipidemic nonobese women. (C) 2008 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd.All rights reserved.
Resumo:
Objectives: To evaluate the lipid profile, insulin resistance and vasomotricity, and the interaction between these factors, in postmenopausal women receiving hormone therapy. Methods: A prospective, randomized, double-blind study was carried out in which 77 postmenopausal women received one of the three treatment regimens: (A) 2 mg oral micronized estradiol (E(2)) (n = 25); (B) 2 mg oral E(2) + 1 mg oral norethisterone acetate (NETA) (n = 28); or Q placebo (n = 24), daily for 6 months. Evaluations were carried out at baseline and at the end of treatment on lipid and lipoprotein profiles, homeostasis model assessment of insulin resistance (HOMA-IR) and pulsatility index (PI) of the internal carotid artery by Doppler ultrasonography. Results: Mean increases of 15.6% and 2.4% and a reduction of 6.4% in high-density lipoprotein (HDL) levels were found for the E(2), E(2) + NETA and placebo groups, respectively. Reductions of 9.5% and 3.7% and an increase of 12.1% in low-density lipoprotein (LDL), and reductions of 20.0% and 3.8% and an increase of 28.8% in the LDL:HDL ratio were found for the E(2), E(2) + NETA and placebo groups, respectively (p < 0.001 in all cases). Insulin levels and HOMA-IR decreased 12.8% and 12.3% in the E2 group and increased 12.9% and 16.0% in the E(2) + NETA group (p < 0.05), respectively. Carotid PI following treatment was 1.18 +/- 0.23, 1.38 +/- 0.20 and 1.41 +/- 0.21 for the E(2), E(2) + NETA and placebo groups, respectively (p = 0.0006). Conclusions: Oral estrogen therapy led to an improvement in lipid profile, insulin resistance and carotid blood flow, which was cancelled when NETA was associated. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Immunoglobulin A deficiency (IgAD) is considered the most common form of primary immunodeficiency. The majority of IgA-deficient individuals are considered asymptomatic, even though IgAD has been associated with an increased frequency of recurrent infections, allergy, and autoimmune diseases. In this study we evaluate the Natural autoantibodies (NatAbs) reactivity to phosphorylcholine (PC) and to some pro-inflammatory molecules in IgAD with or without autoimmune disorders. We observed that in the absence of IgA there is an enhancement of IgG subclasses functioning as NatAbs against PC. Immunoglobulin G (IgG) against lipopolysaccharide, C-reactive protein, and IgA was found in IgAD, regardless of the autoimmune manifestations. Nonetheless, IgAD patients with autoimmune disease showed significantly higher IgG reactivity against pro-inflammatory molecules, such as cardiolipin, oxidized low-density lipoproteins, and phosphatidylserine, with positive correlation between them. In conclusion, the IgG NatAbs against PC may represent a compensatory defense mechanism against infections and control excess of inflammation, explaining the asymptomatic status in the IgA deficiency.
Resumo:
Objective: We correlated dietary profile and markers of visceral and somatic obesities in nonalcoholic fatty liver disease. Methods: Patients with histologically proven fatty infiltration of the liver (n = 25, 52 +/- 11 y of age, 64% women) underwent abdominal computed tomography, bioelectrical impedance, and anthropometric measurements. Insulin resistance was evaluated (homeostasis model assessment) and dietary intake of macronutrients was estimated by 24-h recall. Main outcome measurements were correlation of carbohydrate and fat ingestion with liver histology. Results: Metabolic syndrome was present in 72% of the population, and increased waist circumference and low high-density lipoprotein cholesterol occurred in 66%. Total body fat (bioimpedance) and dietary intake of lipids were higher in patients with non-alcoholic steatohepatitis (P < 0.05), but not in diabetic subjects who exhibited more steatosis than non-alcoholic steatohepatitis. Waist circumference exhibited a good correlation with homeostasis model assessment, total energy intake, and ingestion of specific fatty acids. Body mass index correlated well with somatic and visceral adiposities. Conclusion: Energy intake and visceral adiposity were predisposing factors for fatty liver disease. Lipid input correlated with non-alcoholic steatohepatitis in the entire group and after stratification for diabetes. These findings suggest that lipid intake may play a greater role in non-alcoholic steatohepatitis than hitherto suspected. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To evaluate the role oral administration of S-nitroso-N-acetylcysteine (SNAC), a NO donor drug, in the prevention and reversion of NASH in two different animal models. Methods: NASH was induced in male ob/ob mice by methionine-choline deficient (MCD) and high-fat (H) diets. Two animal groups received or not SNAC orally for four weeks since the beginning of the treatment. Two other groups were submitted to MCD and H diets for 60 days receiving SNAC only from the 31(st) to the 60(th) day. Results: SNAC administration inhibited the development of NASH in all groups, leading to a marked decrease in macro and microvacuolar steatosis and in hepatic lipid peroxidation in the MCD group. SNAC treatment reversed the development of NASH in animals treated for 60 days with MCD or H diets, which received SNAC only from the 31(st) to the 60(th) day. Conclusions: Oral administration of SNAC markedly inhibited and reversed NASH induced by MCD and H diets in ob/ob mice.
Resumo:
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6xHis were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.
Resumo:
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Obstructive sleep apnea (OSA) is independently associated with death from cardiovascular diseases, including myocardial infarction and stroke. Myocardial infarction and stroke are complications of atherosclerosis; therefore, over the last decade investigators have tried to unravel relationships between OSA and atherosclerosis. OSA may accelerate atherosclerosis by exacerbating key atherogenic risk factors. For instance, OSA is a recognized secondary cause of hypertension and may contribute to insulin resistance, diabetes, and dyslipidemia. In addition, clinical data and experimental evidence in animal models suggest that OSA can have direct proatherogenic effects inducing systemic inflammation, oxidative stress, vascular smooth cell activation, increased adhesion molecule expression, monocyte/lymphocyte activation, increased lipid loading in macrophages, lipid peroxidation, and endothelial dysfunction. Several cross-sectional studies have shown consistently that OSA is independently associated with surrogate markers of premature atherosclerosis, most of them in the carotid bed. Moreover, OSA treatment with continuous positive airway pressure may attenuate carotid atherosclerosis, as has been shown in a randomized clinical trial. This review provides an update on the role of OSA in atherogenesis and highlights future perspectives in this important research area. CHEST 2011; 140(2):534-542
Resumo:
Purpose of review The aim of this review is to summarize current evidence about the impact of obstructive sleep apnea (OSA) and intermittent hypoxia on dyslipidemia and provide future perspectives in this area. Recent findings Intermittent hypoxia, a hallmark of OSA, induces hyperlipidemia in lean mice. Hyperlipidemia of intermittent hypoxia occurs, at least in part, due to activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1) and an important downstream enzyme of triglyceride and phospholipid biosynthesis, stearoyl-CoA desaturase-1. Furthermore, intermittent hypoxia may regulate SREBP-1 and stearoyl-CoA desaturase-1 via the transcription factor hypoxia-inducible factor 1. In contrast, key genes involved in cholesterol biosynthesis, SREBP-2 and 3-hydroxy-3-methylglutaryl- CoA (HMG-CoA) reductase, are unaffected by intermittent hypoxia. In humans, there is no definitive evidence regarding the effect of OSA on dyslipidemia. Several cross-sectional studies suggest that OSA is independently associated with increased levels of total cholesterol, low-density lipoprotein and triglycerides, whereas others report no such relationship. Some nonrandomized and randomized studies show that OSA treatment with continuous positive airway pressure may have a beneficial effect on lipid profile. Summary There is increasing evidence that intermittent hypoxia is independently associated with dyslipidemia. However, the role of OSA in causality of dyslipidemia remains to be established.
Resumo:
Objective: To evaluate the prevalence of traditional risk factors in patients with primary antiphospholipid syndrome (APS) in comparison to those with systemic lupus erythematosus-secondary APS. Methods: Transversal study of 96 APS patients (Sapporo`s criteria). Demographic and clinical data, cardiovascular risk factors and drug use were investigated. Results: Thirty-nine Primary APS and 57 secondary APS were included. The groups did not differ regarding age (38.5 +/- 9.9 vs. 39.4 +/- 10.5 years, p=0.84) and female gender (84.6 vs. 96.5%, p=0.06), respectively. Arterial events were more observed in primary than secondary APS (59 vs. 36.8%, p=0.04) patients. No difference was seen concerning venous and obstetric events. In regard to traditional risk factors for cardiovascular disease, both groups were comparable related to current or previous smoking, sedentarism, family history for coronary disease, systemic hypertension, diabetes mellitus, overweight and obesity. The frequencies of altered lipid profiles were alike in the two groups, except for a higher prevalence of low HDL-c levels in primary APS group (84.6 vs. 45.5%, p=0.0001). Concerning drug use, no significant differences were observed related to chloroquine and statin use, however the secondary APS patients had a higher rate of prednisone use (10.2 vs. 57.9%, p<0.001) as well as mean dose of corticosteroid (1.5 +/- 5.7 vs. 9.2 +/- 12.5mg/ /day, p=0.0001). Conclusion: Traditional risk factors for cardiovascular disease are present and comparable between patients with primary and secondary APS, except for a high frequency of low HDL-c in primary APS patients.
Resumo:
Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.
Resumo:
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spc(r)) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
Resumo:
Purpose: In this study we analyzed the role played by aerobic exercise training in the plasma lipoprotein profile, prebeta 1-HDL concentration, and in the in vitro HDL3 ability to remove cholesterol from macrophages and inhibit LDL oxidation in type 2 diabetes mellitus (DM) patients and control subjects, in the fasting and postprandial states. Methods: Healthy controls (HTC, N = 11; 1 M/10 F) and subjects with type 2 diabetes mellitus (DMT, N = 11; 3M/ 8F) were engaged in a 4-month aerobic training program, and compared with a group of sedentary subjects with type 2 diabetes mellitus (DMS, N = 10; 4 M/6 F). All groups were submitted to an oral fat load test to analyze all parameters, both at the beginning of the investigation protocol (basal) and at the end of the study period (final). Results: Exercising did not modify body weight, BMI, plasma concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides (TG), glucose, insulin, or HOMA-IR, but it reduced the waist circumference. The HDL3 Composition did not change, and its ability to remove cell cholesterol was unaltered by aerobic training. In DMT but not in HTC, aerobic training improved 15% the HDL3 protective effect against LDL maximal oxidation rate in the fasting state, and reduced 24% the plasma prebeta 1-HDL concentration in the postprandial state, suggesting an enhanced prebeta 1-HDL conversion into larger, more mature HDL particles. In this regard, regular aerobic exercise enriched HDL2 with TG in the fasting and postprandial states in HTC and in the fasting phase in DMT. Conclusion: Our results show that aerobic exercise training in diabetes mellitus improves the HDL efficiency against LDL oxidation and favors HDL maturation. These findings were independent of changes in insulin resistance and of the rise of plasma HDL cholesterol concentration.
Resumo:
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.