888 resultados para likelihood-based inference
Resumo:
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.
Resumo:
A credal network is a graph-theoretic model that represents imprecision in joint probability distributions. An inference in a credal net aims at computing an interval for the probability of an event of interest. Algorithms for inference in credal networks can be divided into exact and approximate. The selection of an algorithm is based on a trade off that ponders how much time someone wants to spend in a particular calculation against the quality of the computed values. This paper presents an algorithm, called IDS, that combines exact and approximate methods for computing inferences in polytree-shaped credal networks. The algorithm provides an approach to trade time and precision when making inferences in credal nets
Resumo:
Credal networks generalize Bayesian networks by relaxing the requirement of precision of probabilities. Credal networks are considerably more expressive than Bayesian networks, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal networks. The algorithm is based on an important representation result we prove for general credal networks: that any credal network can be equivalently reformulated as a credal network with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal network is then updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences with respect to other state-of-the-art algorithms is evaluated by extensive numerical tests.
Resumo:
Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.
Resumo:
This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a mean-squared error criterion. We compare the Maxi-mum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with non-informative prior parameters, that is, the parameters of the Dirichlet are equal and altogether sum up to the so called strength of the prior. Under this criterion, MLE becomes more preferable than the Bayesian estimators at the increase of the number of categories k of the multinomial, because non-informative Bayesian estimators induce a region where they are dominant that quickly shrinks with the increase of k. This can be avoided if the strength of the prior is not kept constant but decreased with the number of categories. We argue that the strength should decrease at least k times faster than usual estimators do.
Resumo:
A credal network associates a directed acyclic graph with a collection of sets of probability measures; it offers a compact representation for sets of multivariate distributions. In this paper we present a new algorithm for inference in credal networks based on an integer programming reformulation. We are concerned with computation of lower/upper probabilities for a variable in a given credal network. Experiments reported in this paper indicate that this new algorithm has better performance than existing ones for some important classes of networks.
Resumo:
A credal network is a graphical tool for representation and manipulation of uncertainty, where probability values may be imprecise or indeterminate. A credal network associates a directed acyclic graph with a collection of sets of probability measures; in this context, inference is the computation of tight lower and upper bounds for conditional probabilities. In this paper we present new algorithms for inference in credal networks based on multilinear programming techniques. Experiments indicate that these new algorithms have better performance than existing ones, in the sense that they can produce more accurate results in larger networks.
Resumo:
To determine if urban residence is associated with an increased risk of anxiety/depression independent of psychosocial stressors, concentrated disadvantage or selective migration between urban and rural areas, this population wide record-linkage study utilised data on receipt of prescription medication linked to area level indicators of conurbation and disadvantage. An urban/rural gradient in anxiolytic and antidepressant use was evident that was independent of variation in population composition. This gradient was most pronounced amongst disadvantaged areas. Migration into increasingly urban areas increased the likelihood of medication. These results suggest increasing conurbation is deleterious to mental health, especially amongst residents of deprived areas
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
The increasing popularity of the social networking service, Twitter, has made it more involved in day-to-day communications, strengthening social relationships and information dissemination. Conversations on Twitter are now being explored as indicators within early warning systems to alert of imminent natural disasters such earthquakes and aid prompt emergency responses to crime. Producers are privileged to have limitless access to market perception from consumer comments on social media and microblogs. Targeted advertising can be made more effective based on user profile information such as demography, interests and location. While these applications have proven beneficial, the ability to effectively infer the location of Twitter users has even more immense value. However, accurately identifying where a message originated from or author’s location remains a challenge thus essentially driving research in that regard. In this paper, we survey a range of techniques applied to infer the location of Twitter users from inception to state-of-the-art. We find significant improvements over time in the granularity levels and better accuracy with results driven by refinements to algorithms and inclusion of more spatial features.
Resumo:
Inferences in directed acyclic graphs associated with probability intervals and sets of probabilities are NP-hard, even for polytrees. We propose: 1) an improvement on Tessem’s A/R algorithm for inferences on polytrees associated with probability intervals; 2) a new algorithm for approximate inferences based on local search; 3) branch-and-bound algorithms that combine the previous techniques. The first two algorithms produce complementary approximate solutions, while branch-and-bound procedures can generate either exact or approximate solutions. We report improvements on existing techniques for inference with probability sets and intervals, in some cases reducing computational effort by several orders of magnitude.
Resumo:
Background
Neighbourhood segregation has been described as a fundamental determinant of physical health, but literature on its effect on mental health is less clear. Whilst most previous research has relied on conceptualized measures of segregation, Northern Ireland is unique as it contains physical manifestations of segregation in the form of segregation barriers (or “peacelines”) which can be used to accurately identify residential segregation.
Methods
We used population-wide health record data on over 1.3 million individuals, to analyse the effect of residential segregation, measured by both the formal Dissimilarity Index and by proximity to a segregation barrier, on the likelihood of poor mental health.
Results
Using multi-level logistic regression models we found residential segregation measured by the Dissimilarity Index poses no additional risk to the likelihood of poor mental health after adjustment for area-level deprivation. However, residence in an area segregated by a “peaceline” increases the likelihood of antidepressant medication by 19% (OR=1.19, 95% CI: 1.14, 1.23) and anxiolytic medication by 39% (OR=1.39, 95% CI: 1.32, 1.48), even after adjustment for gender, age, conurbation, deprivation and crime.
Conclusions
Living in an area segregated by a ‘peaceline’ is detrimental to mental health suggesting segregated areas characterised by a heightened sense of ‘other’ pose a greater risk to mental health. The difference in results based on segregation measure highlights the importance of choice of measure when studying segregation.
Resumo:
Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.
Resumo:
Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Thesis (Master's)--University of Washington, 2016-03