950 resultados para ligands
Resumo:
As a continuing effort to establish the structure-activity relationships (SARs) within the series of the angiotensin II antagonists (sartans), a pharmacophoric model was built by using novel TOPP 3D descriptors. Statistical values were satisfactory (PC4: r(2)=0.96, q(2) ((5) (random) (groups))=0.84; SDEP=0.26) and encouraged the synthesis and consequent biological evaluation of a series of new pyrrolidine derivatives. SAR together with a combined 3D quantitative SAR and high-throughput virtual screening showed that the newly synthesized 1-acyl-N-(biphenyl-4-ylmethyl)pyrrolidine-2-carboxamides may represent an interesting starting point for the design of new antihypertensive agents. In particular, biological tests performed on CHO-hAT(1) cells stably expressing the human AT(1) receptor showed that the length of the acyl chain is crucial for the receptor interaction and that the valeric chain is the optimal one.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.
Resumo:
Given the paucity of information on the potential roles of bone morphogenetic proteins (BMPs) in the ruminant ovary we conducted immunolocalization and functional studies on cells isolated from bovine antral follicles. Immunocytochemistry revealed expression of BMP-4 and -7 in isolated theca cells whereas granulosa cells and oocytes selectively expressed RMP-6. All three cell types expressed a range of BMP-responsive type-I (BMPRIB, ActRI) and type-II (BMPRII, ActRII, ActRIIB) receptors supporting autocrine/paracrine roles within the follicle. This was reinforced by functional experiments on granulosa cells which showed that BMP-4, -6 and -7 promoted cellular accumulation of phosphorylated Smad-1 but not Smad-2 and enhanced 'basal' and IGF-stimulated secretion of oestradiol (E2), inhibin-A, activin-A and follistatin (FS). Concomitantly, each BMP suppressed 'basal' and IGF-stimulated progesterone secretion, consistent with an action to prevent or delay atresia and/or luteinization. BMPs also increased viable cell number under 'basal' (BMP-4 and -7) and IGF-stimulated (BMP-4, -6 and -7) conditions. Since FS, a product of bovine granulosa cells, has been shown to bind several BMPs, we used the Biacore technique to compare its binding affinities for activin-A (prototype FS ligand) and BMP-4, -6 and -7. Compared with activin-A (K-d 0.28 +/- 0.02 nM; 100%), the relative affinities of FS for BMP-4, -6 and -7 were 10, 5 and 1% respectively. Moreover, studies on granulosa cells showed that preincubation of ligand with excess FS abolished activin-A-induced phosphorylation of Smad-2 and BMP-4-induced phosphorylation of Smad-1. However, FS only partially reversed BMP-6-induced Smad-1 phosphorylation and had no inhibitory effect on BMP-7-induced Smad-1 phosphorylation. These findings support functional roles for BMP-4, -6 and -7 as paracrine/autocrine modulators of granulosa cell steroidogenesis, peptide secretion and proliferation in bovine antral follicles. The finding that FS can differentially modulate BMP-induced receptor activation and that this correlates with the relative binding affinity of FS for each BMP type implicates FS as a potential modulator of BMP action in the ovary.
Resumo:
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O-2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of Fe-B(2+) to Fe-C(2+) enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Mixed ligand complexes: [Co(L)(bipy)] (.) 3H(2)O (1), [Ni(L)(phen)] (.) H2O (2), [Cu(L)(phen)] (.) 3H(2)O (3) and [Zn(L)(bipy)] (.) 3H(2)O (4), where L2- = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H(2)bzimida, hereafter, H,L), bipy = 2,2' bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10(-1) mol dm(-3) (NaNO3), at 25 +/- 1 degrees C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H-1L)(-), M(B)(2+), M(L)(B), M(H-1L)(B)(-), M-2(H-1L)(OH), (B)M(H-1L)M(B)(+), where H-1L3- represents two -COOH and the benzimidazole NI-H deprotonated quadridentate (O-, N, O-, N), or, quinquedentate (O-, N, O-, N, N-) function of the coordinated ligand H,L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)(2+) = (B)M(H-1L)M(B)(+) + H+ is favoured with higher pi-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Delta logK(M) values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Three new polymeric complexes [Cd(hmt)(SCN)(2)(H2O)(2)](n) (1), [Cd-3(mu(2)-hmt)(2)(SCN)(6)(H2O)(2)](n) (2), and [Cd-2(hmt)(2)(tP)(2)(H2O)(6)](n) (3) [hmt = hexamethylenetetramine, tp = terephthalate] have been synthesized and characterized by single crystal X-ray diffraction. Both the compounds 1 and 2 are 1-D polymers where Cd units are linked by double end-to-end thiocyanate bridges but in 2 the chain is wider containing three cadmium atoms instead of one as found in 1. In both compounds the coordination environment around cadmium atom is distorted octahedral. Compound 3 is a three-dimensional polymer having water-filled microporous channels. Both tp and brut are mu(2)-bridged. One of the acid groups of tp is coordinated in chelating bidentate and the other in monodentate fashion. Half of its Cd atoms are hexa-coordinated and the rest are hepta-coordinated. Thermogravimetric analysis and X-ray diffraction study of 3 show that its framework remains intact upon removal of water molecules. The flexibility of coordination number around cadmium atoms (six or seven) probably plays an important role in establishing the rigidity of the framework. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Extended-chain complexes containing multiple transition metal centres linked by conjugated mu-cyanodiazenido(1-) ligands [N= N-C N]-have been obtained by reaction of trans-[BrW(dppe)(2)(N2CN)], 1, [dppe = 1,2-bis(diphenylphosphino) ethane] with dirhodium(II) tetra-acetate, bis(benzonitrile) palladium(II) dichloride, and bis(aqua) M(II) bis(hexa. uoroacetylacetonate) (M = Mn, Ni, Cu, Zn): stronger Lewis acids such as tetrakis(acetonitrile) palladium(II) tetra. uoroborate and boron trifl. uoride promote hydrolysis of complex 1, leading to the isolation of a novel carbamoylhydrazido(2-) complex, trans-[BrW(dppe) 2(N2HC=ONH2)](+)[BF4](-).
Resumo:
Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two sets of nickel(11) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl](2) and [Ni(L)(N-3)](2) [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl- anions while in 2 they are bridged by two azide ions in a mu-1,1-bridging fashion. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two oxorhenium(V) complexes with bidentate phosphine ligands were synthesized and isolated as [ReOCl3(dppm)] 1 and [ReOCl3(dppp)] 2 [where dppm = 1,1-bis(diphenylphosphino) methane and dppp = 1.3-bis(diphenylphosphino) propanel. Complex 2 was structurally characterized. Both the complexes were used as catalysts in the epoxidation of olefins using NaHCO3 as co-catalyst and H2O2 as terminal oxidant. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)(3)(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)(3)(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)(3)] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)(3)] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)(3)]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90degrees, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The ability of new hydrophobic tridentate ligands based on 2,6-bis(benziinidazol-2-yl)pyridine, 2,6-bis(benzoxazol-2-yl)pyridine and 2,6-bis(benzothiazol-2-yl)pyridine to selectively extract americium(III) from europium(III) was measured. The most promising ligand-2,6-bis(benzoxazol-2-yl)-4-(2-decyl-1-tetradecyloxy)pyridine L-9 was found to give separation factors (SFAm/Eu) of up to 70 when used to extract cations from 0.02-0.10 M HNO3 into TPH in synergy with 2-bromodecanoic acid. Six structures of lanthanide complexes with 2,6-bis(benzoxazol-2-yl)pyridine L-6 were then determined to evaluate the types of species that are likely to be involved in the separation process. Three structural types were observed, namely [LnL(6)(NO3)(3)(H2O)2], 11-coordinate only for La, [LnL(6) (NO3)(3) (CH3CN)], 10-coordinate for Pr, Nd and Eu and [LnL(6) (NO3)(3)(H2O)], L 10-coordinate for Eu and Gd. Quantum Mechanics calculations were carried out on the tridentate ligands to elucidate the conformational preferences of the ligands in the free state and protonated and diprotonated forms and to assess the electronic properties of the ligands for comparison with other terdentate ligands used in lanthanide/actinide separation processes.