970 resultados para ligand binding
Resumo:
The aim of this dissertation was to examine the hypothesis that (R)-nipecotic acid ethyl ester ((R)-NAEE) is a cholinergic agonist that is selective for a particular subclass (M$\sb1$ or M$\sb2$) of muscarinic receptors.^ Ligand binding studies indicated that like cholinergic agonists (R)-NAEE selectively interacts with rat heart (M$\sb2$) and brain (M$\sb1$) muscarinic binding sites. Physiological studies revealed that unlike cholinergic agonists (R)-NAEE stimulated only those responses coupled to M$\sb2$ muscarinic receptors (acid secretion, negative inotropic response, smooth muscle contraction). Moreover, in rat brain (R)-NAEE differentiated between M$\sb2$ receptors negatively coupled to adenylate cyclase activity and M$\sb1$ receptors mediating PI turnover, being a weak competitive antagonist at these latter sites. In isolated rat gastric mucosal cells (R)-NAEE also differentiated between two M$\sb2$ coupled responses where it potentiated acid secretion but could not stimulate PI turnover. Atropine, a selective antimuscarinic agent, competitively antagonized all agonist effects of (R)-NAEE.^ Unlike (R)-NAEE, the muscarinic agonist arecoline, which is structurally similar to (R)-NAEE, stimulates both M$\sb1$ and M$\sb2$ receptors. Structure activity studies revealed that saturation of the piperidine ring and the length of the ester side chain of (R)-NAEE are the most important determinants for both M$\sb2$ efficacy and selectivity.^ The results of this dissertation establish that (R)-NAEE is a cholinergic muscarinic receptor agonist that displays greater efficacy at M$\sb2$ than at M$\sb1$ receptors, being a weak antagonist at the M$\sb1$ site. With such selectivity, (R)-NAEE may be regarded as a prototype for a unique class of cholinergic muscarinic M$\sb2$ receptor agonists. Because of these unique properties, (R)-NAEE should be useful in the further characterization of muscarinic receptors, and could lead to the development of a new class of therapeutic agents. ^
Resumo:
Aminoacyl-tRNA synthetases (RSs) are responsible for the essential connection of amino acids with trinucleotide sequences of tRNA's. The RS family constitutes two structurally dissimilar groups of proteins, class I and class II. Methionyl-tRNA synthetase (MetRS) and isoleucyl-tRNA synthetase (IleRS), both members of class I, were the focus of this work. Both enzymes are zinc-containing proteins; show a high degree of amino acid specificity; and edit activated noncognate amino acids, thereby ensuring the fidelity of the genetic code. The goals of this work were to further delineate the molecular basis of catalysis and discrimination in these enzymes by mapping active site geometries using high-resolution nuclear magnetic resonance spectroscopy (NMR).^ Internuclear distances obtained from transferred nuclear Overhauser effects were used to define the conformations of Mg($\alpha$,$\beta$-methylene)ATP bound to E. coli MetRS and E. coli IleRS in multiple complexes. Identical conformations were found for the bound ATP. Thus, the predicted structural homology between IleRS and MetRS is supported by consensus enzyme-bound nucleotide conformations. The conformation of the bound nucleotide is not sensitive to occupation of the amino acid site of MetRS or IleRS. Therefore, conformational changes known to occur in the synthetases upon ligand binding appear not to alter the bound conformation of the adenosine portion of the nucleotide. Nuclear Overhauser effects on the substrate amino acid L-selenomethionine were also used to evaluate the enzyme-bound conformation of the cognate amino acid. The amino acid assumes a conformation which is consistent with a proposed editing mechanism.^ The E. coli MetRS was shown to catalyze amino acid $\alpha$-proton exchange in the presence of deuterium oxide of all cognate amino acids. It is proposed that the enzyme-bound zinc coordinates the $\alpha$-carboxylate of the amino acid, rendering the $\alpha$-proton more acidic. An enzymic base is responsible for exchange of the $\alpha$-proton. This proposal suggests that the enzyme-bound zinc may have a role in amino acid discrimination in MetRS. However, the role of this exchange reaction in catalysis remains unknown. ^
Resumo:
The integrin receptor $\alpha 4\beta 1$ is a cell surface heterodimer involved in a variety of highly regulated cellular interactions. The purpose of this dissertation was to identify and characterize unique structural and functional properties of the $\alpha 4\beta 1$ molecule that may be important for adhesion regulation and signal transduction. To study these properties and to establish a consensus sequence for the $\alpha 4$ subunit, cDNA encoding $\alpha 4$ was cloned and sequenced. A comparison with previously described human $\alpha 4$ sequences identified several substitutions in the $5\prime$ and $3\prime$ untranslated regions, and a nonsynonymous G to A transition in the coding region, resulting in a glutamine substitution for arginine. Further analysis of this single nucleotide substitution indicated that two variants of the $\alpha 4$ subunit exist, and when compared with three ancestrally-related species, the new form cloned in our laboratory was found to be evolutionarily conserved.^ The expression of $\alpha 4$ cDNA in transfected K562 erythroleukemia cells, and subsequent studies using flow cytofluorometric, immunochemical, and ligand binding/blocking analyses, confirmed $\alpha 4\beta 1$ as a receptor for fibronectin (FN) and vascular cell adhesion molecule-1 (VCAM-1), and provided a practical means of identifying two novel monoclonal antibody (mAb) binding epitopes on the $\alpha 4\beta 1$ complex that may play important roles in the regulation of leukocyte adhesion.^ To investigate the association of $\alpha 4\beta 1$-mediated adhesion with signals involved in the spreading of lymphocytes on FN, a quantitative method of analysis was developed using video microscopy and digital imaging. The results showed that HPB-ALL $(\alpha 4\beta 1\sp{\rm hi},\ \alpha 5\beta 1\sp-)$ cells could adhere and actively spread on human plasma FN, but not on control substrate. Many cell types which express different levels of the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ FN binding integrins were examined for their ability to function in these events. Using anti-$\alpha 4$ and anti-$\alpha 5$ mAbs, it was determined that cell adhesion to FN was influenced by both $\beta 1$ integrins, while cell spreading was found to be dependent on the $\alpha 4\beta 1$ complex. In addition, inhibitors of phospholipase A$\sb2$ (PLA$\sb2$), 5-lipoxygenases, and cyclooxygenases blocked HPB-ALL cell spreading, yet had no effect on cell adhesion to FN, and the impaired spreading induced by the PLA$\sb2$ inhibitor cibacron blue was restored by the addition of exogenous arachidonic acid (AA). These results suggest that the interaction of $\alpha 4\beta 1$ with FN, the activation of PLA$\sb2,$ and the subsequent release of AA, may be involved in lymphocyte spreading. ^
Resumo:
In Halobacterium salinarum phototaxis is mediated by the visual pigment-like photoreceptors sensory rhodopsin I (SRI) and II (SRII). SRI is a receptor for attractant orange and repellent UV-blue light, and SRII is a receptor for repellent blue-green light, and transmit signals through the membrane-bound transducer proteins HtrI and HtrII, respectively. ^ The primary sequences of HtrI and HtrII predict 2 transmembrane helices (TM1 and TM2) followed by a hydrophilic cytoplasmic domain. HtrII shows an additional large periplasmic domain for chemotactic ligand binding. The cytoplasmic regions are homologous to the adaptation and signaling domains of eubacterial chemotaxis receptors and, like their eubacterial homologs, modulate the transfer of phosphate groups from the histidine protein kinase CheA to the response regulator CheY that in turn controls flagellar motor rotation and the cell's swimming behavior. HtrII and Htrl are dimeric proteins which were predicted to contain carboxylmethylation sites in a 4-helix bundle in their cytoplasmic regions, like eubacterial chemotaxis receptors. ^ The phototaxis transducers of H. salinarum have provided a model for studying receptor/tranducer interaction, adaptation in sensory systems, and the role of membrane molecular complexes in signal transduction. ^ Interaction between the transducer HtrI and the photoreceptor SRI was explored by creating six deletion constructs of HtrI, with progressively shorter cytoplasmic domains. This study confirmed a putative chaperone-like function of HtrI, facilitating membrane insertion or stability of the SRI protein, a phenomenon previously observed in the laboratory, and identified the smallest HtrI fragment containing interaction sites for both the chaperone-like function and SRI photocycle control. The active fragment consisted of the N-terminal 147 residues of the 536-residue HtrI protein, a portion of the molecule predicted to contain the two transmembrane helices and the first ∼20% of the cytoplasmic portion of the protein. ^ Phototaxis and chemotaxis sensory systems adapt to stimuli, thereby signaling only in response to changes in environmental conditions. Observations made in our and in other laboratories and homologies between the halobacterial transducers with the chemoreceptors of enteric bacteria anticipated a role for methylation in adaptation to chemo- and photostimuli. By site directed mutagenesis we identified the methylation sites to be the glutamate pairs E265–E266 in HtrI and E513–E514 in HtrII. Cells containing the unmethylatable transducers are still able to perform phototaxis and adapt to light stimuli. By pulse-chase analysis we found that methanol production from carboxylmethyl group hydrolysis occurs upon specific photo stimulation of unmethylatable HtrI and HtrII and is due to turnover of methyl groups on other transducers. We demonstrated that the turnover in wild-type H. salinarum cells that follows a positive stimulus is CheY-dependent. The CheY-feedback pathway does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell. ^ Assembly of signaling molecules into architecturally defined complexes is considered essential in transmission of the signals. The spectroscopic characteristics of SRI were exploited to study the stoichiometric composition in the phototaxis complex SRI-HtrI. A molar ratio of 2.1 HtrI: 1 SRI was obtained, suggesting that only 1 SRI binding site is occupied on the HtrI homodimer. We used gold-immunoelectron microscopy and light fluorescence microscopy to investigate the structural organization and the distribution of other halobacterial transducers. We detected clusters of transducers, usually near the cell's poles, providing a ultrastructural basis for the global effects and intertransducer communication we observe. ^
Resumo:
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.
Resumo:
Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [3H]granisetron. Kinetic measurements (kon = 4.0 × 104 M−1 s−1; koff = 0.23 s−1) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.
Resumo:
Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA2 values of 4.92 (KB=12.0 μM) and 4.97 (KB=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with Ki values of 15.0, 24.2 and 35.7 μM. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists.
Resumo:
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Resumo:
In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the CNS and PNS that is activated by the endogenous agonist serotonin (5-hydroxytryptamine, 5-HT). 5-HT3R is the only serotonin receptor belonging to the Cys-loop superfamily of neurotransmitter receptors. Different structural biology approaches can be applied, such as crystallization and x-ray analysis. Nonetheless, characterizing the exact ligand binding site(s) of these dynamic receptors is still challenging. The use of photo-crosslinking probes is an alternative validated approach allowing identification of regions in the protein that are important for the binding of small molecules. We designed our probes based on the core structure of the 5-HT3R antagonist granisetron, a FDA approved drug used for the treatment of chemotherapy-induced nausea and vomiting. We synthesized a small library of photo-crosslinking probes by conjugating diazirines and benzophenones via various linkers to granisetron. We were able to obtain several compounds with diverse linker lengths and different photo-crosslinking moieties that show nanomolar binding affinity for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Several experiments showed unambiguously that we are able to photo-crosslink our probes with the receptor site-specifically. The functionalised protein was analysed by Western blot and MS-analysis. This yielded the exact covalent modification site, corroborating current ligand binding models derived from mutagenesis and docking studies.
Resumo:
UNLABELLED A high proportion of gut and bronchial neuroendocrine tumors (NETs) overexpresses somatostatin receptors, especially the sst2 subtype. It has also recently been observed that incretin receptors, namely glucagonlike peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptors, can be overexpressed in gut and bronchial NETs. However, because not all tumors can express these receptors in sufficient amounts, in vivo imaging with a single radioligand may not always be successful. We therefore evaluated with in vitro methods whether a cocktail of radioligands targeting these 3 receptors would improve tumor labeling. METHODS In vitro receptor autoradiography was performed on 55 NETs, comparing in each successive section of tumor the binding with a single radioligand, either (125)I-Tyr(3)-octreotide, (125)I-GLP-1(7-36)amide, or (125)I-GIP(1-30), with the binding using a cocktail of all 3 radioligands, given concomitantly under identical experimental conditions. RESULTS Using the cocktail of radioligands, all tumors without exception showed moderate to very high binding, with a receptor density corresponding to 1,000-10,000 dpm/mg of tissue; conversely, single-ligand binding, although identifying most tumors as receptor-positive, failed to detect receptors or measured only a low density of receptors below 1,000 dpm/mg in a significant number of tumors. In addition, the cocktail of radioligands always provided a homogeneous labeling of the whole tumor, whereas single radioligands occasionally showed heterogeneous labeling. CONCLUSION The study suggests that the use of a cocktail of 3 radioligands binding to somatostatin receptors, GLP-1 receptors, and GIP receptors would allow detecting virtually all NETs and labeling them homogeneously in vivo, representing a significant improvement for imaging and therapy in NETs.
Resumo:
Spermadhesins belong to a novel family of secretory proteins of the male genital tract. They are major proteins of the seminal plasma and have been found peripherally associated to the sperm surface. So far, they have only been detected in ungulates, specifically in pig, cattle, and horse, respectively. Spermadhesins form a subgroup of the superfamily of proteins with a CUB-domain that has been found in a variety of developmentally regulated proteins. The structure and function of the spermadhesins have been investigated in the pig. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. to carbohydrates, phospholipids, and protease inhibitors, suggesting that they may be involved in different steps of fertilization. We report here the genomic organization of the porcine spermadhesin gene cluster as well as a detailed comparative analysis with respect to other mammalian species. The porcine spermadhesin genes are located on SSC 14q28-q29 in a region syntenic to HSA 10q26. The pig contains five closely linked spermadhesin genes, whereas only two spermadhesin genes are present in the cattle genome. Inactive copies of spermadhesin genes are still detectable in the human, chimp, and dog genome while the corresponding region was lost from the rodent genomes of mouse and rat. Within the pig, the five spermadhesin genes contain both highly diverged and highly conserved regions. Interestingly, the pattern of divergence does not correlate with the position of the exons. Evolutionary analyses suggest that the pattern of diversity is shaped by ancestral variation, recombination, and new mutations.
Resumo:
Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [3H]granisetron (Ki = 6.76 µM) and G-FL (Ki = 4.90 µM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 µM, and competed with G-FL with a Ki of 7.94 µM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 µM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.
Resumo:
Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^