851 resultados para learning network
Resumo:
The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.
Resumo:
The paper reports on a study of design studio culture from a student perspective. Learning in design studio culture has been theorised variously as a signature pedagogy emulating professional practice models, as a community of practice and as a form of problem-based learning, all largely based on the study of teaching events in studio. The focus of this research has extended beyond formally recognized activities to encompass the student’s experience of their social and community networks, working places and study set-ups, to examine how these have contributed to studio culture and how there have been supported by studio teaching. Semi-structured interviews with final year undergraduate students of architecture formed the basis of the study using an interpretivist approach informed by Actor-network theory, with studio culture featured as the focal actor, enrolling students and engaging with other actors, together constituting an actor-network of studio culture. The other actors included social community patterns and activities; the numerous working spaces (including but not limited to the studio space itself); the equipment, tools of trade and material pre-requisites for working; the portfolio enrolling the other actors to produce work for it; and the various formal and informal events associated with the course itself. Studio culture is a highly charged social arena: The question is how, and in particular, which aspects of it support learning? Theoretical models of situated learning and communities of practice models have informed the analysis, with Bourdieu’s theory of practice, and his interrelated concepts of habitus, field and capital providing a means of relating individually acquired habits and modes of working to social contexts. Bourdieu’s model of habitus involves the externalisation through the social realm of habits and knowledge previously internalised. It is therefore a useful model for considering whole individual learning activities; shared repertoires and practices located in the social realm. The social milieu of the studio provides a scene for the exercise and display of ‘practicing’ and the accumulation of a form of ‘practicing-capital’. This capital is a property of the social milieu rather than the space, so working or practicing in the company of others (in space and through social media) becomes a more valued aspect of studio than space or facilities alone. This practicing-capital involves the acquisition of a habitus of studio culture, with the transformation of physical practices or habits into social dispositions, acquiring social capital (driving the social milieu) and cultural capital (practicing-knowledge) in the process. The research drew on students’ experiences, and their practicing ‘getting a feel for the game’ by exploring the limits or boundaries of the field of studio culture. The research demonstrated that a notional studio community was in effect a social context for supporting learning; a range of settings to explore and test out newly internalised knowledge, demonstrate or display ideas, modes of thinking and practicing. The study presents a nuanced interpretation of how students relate to a studio culture that involves a notional community, and a developing habitus within a field of practicing that extends beyond teaching scenarios.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
In 2015 the Irish Mathematics Learning Support Network (IMLSN) commissioned a comprehensive audit of the extent and nature of mathematics learning support (MLS) provision on the island of Ireland. An online survey was sent to 32 institutions, including universities, institutes of technology, further education and teacher training colleges, and a 97% response rate was achieved. While the headline figure – 84% of institutions that responded to the survey provide MLS – sounds good, deeper analysis reveals that the true state of MLS is not so solid. For example, in 25% of institutions offering MLS, only five hours per week (at most) of physical MLS are available, while in 20% of institutions the service is provided by only one or two staff members. Furthermore, training of tutors is minimal or non-existent in at least half of the institutions offering MLS. The results provide an illuminating picture, however, identifying the true state of MLS in Ireland is beneficial only if it informs developments in the years ahead. This talk will present some of the findings of the survey in more depth along with conclusions and recommendations. Key among these is the need for institutions to recognise MLS as a vital element of mathematics teaching and learning strategy at third level and devote the necessary resources to facilitate the provision of a service which can grow and adapt to meet student requirements.
Resumo:
In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as Multi- Dimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students’ misconceptions. To accomplish this, each student’s knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student’s concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.
Resumo:
Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.
Resumo:
Academic literature has increasingly recognized the value of non-traditional higher education learning environments that emphasize action-orientated experiential learning for the study of entrepreneurship (Gibb, 2002; Jones & English, 2004). Many entrepreneurship educators have accordingly adopted approaches based on Kolb’s (1984) experiential learning cycle to develop a dynamic, holistic model of an experience-based learning process. Jones and Iredale (2010) suggested that entrepreneurship education requires experiential learning styles and creative problem solving to effectively engage students. Support has also been expressed for learning-by-doing activities in group or network contexts (Rasmussen and Sorheim, 2006), and for student-led approaches (Fiet, 2001). This study will build on previous works by exploring the use of experiential learning in an applied setting to develop entrepreneurial attitudes and traits in students. Based on the above literature, a British higher education institution (HEI) implemented a new, entrepreneurially-focused curriculum during the 2013/14 academic year designed to support and develop students’ entrepreneurial attitudes and intentions. The approach actively involved students in small scale entrepreneurship activities by providing scaffolded opportunities for students to design and enact their own entrepreneurial concepts. Students were provided with the necessary resources and training to run small entrepreneurial ventures in three different working environments. During the course of the year, three applied entrepreneurial opportunities were provided for students, increasing in complexity, length, and profitability as the year progressed. For the first undertaking, the class was divided into small groups, and each group was given a time slot and venue to run a pop-up shop in a busy commercial shopping centre. Each group of students was supported by lectures and dedicated class time for group work, while receiving a set of objectives and recommended resources. For the second venture, groups of students were given the opportunity to utilize an on-campus bar/club for an evening and were asked to organize and run a profitable event, acting as an outside promoter. Students were supported with lectures and seminars, and groups were given a £250 budget to develop, plan, and market their unique event. The final event was optional and required initiative on the part of the students. Students were given the opportunity to develop and put forward business plans to be judged by the HEI and the supporting organizations, which selected the winning plan. The authors of the winning business plan received a £2000 budget and a six-week lease to a commercial retail unit within a shopping centre to run their business. Students received additional academic support upon request from the instructor, and one of the supporting organizations provided a training course offering advice on creating a budget and a business plan. Data from students taking part in each of the events was collected, in order to ascertain the learning benefits of the experiential learning, along with the successes and difficulties they faced. These responses have been collected and analyzed and will be presented at the conference along with the instructor’s conclusions and recommendations for the use of such programs in higher educations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Biodiversity loss is one of the most significant drivers of ecosystem change and is projected to continue at a rapid rate. While protected areas, such as national parks, are seen as important refuges for biodiversity, their effectiveness in stemming biodiversity decline has been questioned. Public agencies have a critical role in the governance of many such areas, but there are tensions between the need for these agencies to be more “adaptive” and their current operating environment. Our aim is to analyze how institutions enable or constrain capacity to conserve biodiversity in a globally significant cross-border network of protected areas, the Australian Alps. Using a novel conceptual framework for diagnosing biodiversity institutions, our research examined institutional adaptive capacity and more general capacity for conserving biodiversity. Several intertwined issues limit public agencies’ capacity to fulfill their conservation responsibilities. Narrowly defined accountability measures constrain adaptive capacity and divert attention away from addressing key biodiversity outcomes. Implications for learning were also evident, with protected area agencies demonstrating successful learning for on-ground issues but less success in applying this learning to deeper policy change. Poor capacity to buffer political and community influences in managing significant cross-border drivers of biodiversity decline signals poor fit with the institutional context and has implications for functional fit. While cooperative federalism provides potential benefits for buffering through diversity, it also means protected area agencies have restricted authority to address cross-border threats. Restrictions on staff authority and discretion, as public servants, have further implications for deploying capacity. This analysis, particularly the possibility of fostering “ambidexterity”—creatively responding to political pressures in a way that also achieves a desirable outcome for biodiversity conservation—is one promising way of building capacity to buffer both political influences and ecological pressures. The findings and the supporting analysis provide insight into how institutional capacity to conserve biodiversity can be enhanced in protected areas in Australia and elsewhere, especially those governed by public agencies and/or multiple organizations and across jurisdictions.
Resumo:
This multi-perspectival Interpretive Phenomenological Analysis (IPA) study explored how people in the ‘networks of concern’ talked about how they tried to make sense of the challenging behaviours of four children with severe learning disabilities. The study also aimed to explore what affected relationships between people. The study focussed on 4 children through interviewing their mothers, their teachers and the Camhs Learning Disability team members who were working with them. Two fathers also joined part of the interviews. All interviews were conducted separately using a semi-structured approach. IPA allowed both a consideration of the participant’s lived experiences and ‘objects of concern’ and a deconstruction of the multiple contexts of people’s lives, with a particular focus on disability. The analysis rendered five themes: the importance of love and affection, the difficulties, and the differences of living with a challenging child, the importance of being able to make sense of the challenges and the value of good relationships between people. Findings were interpreted through the lens of CMM (Coordinated Management of Meaning), which facilitated a systemic deconstruction and reconstruction of the findings. The research found that making sense of the challenges was a key concern for parents. Sharing meanings were important for people’s relationships with each other, including employing diagnostic and behavioural narratives. The importance of context is also highlighted including a consideration of how societal views of disability have an influence on people in the ‘network of concern’ around the child. A range of systemic approaches, methods and techniques are suggested as one way of improving services to these children and their families. It is suggested that adopting a ‘both/and’ position is important in such work - both applying evidence based approaches and being alert to and exploring the different ways people try and make sense of the children’s challenges. Implications for practice included helping professionals be alert to their constructions and professional narratives, slowing the pace with families, staying close to the concerns of families and addressing network issues.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08