888 resultados para latent growth curve modeling
Resumo:
Laser mediated stimulation of biological process was amongst its very first effects documented by Mester et al. but the ambiguous and tissue-cell context specific biological effects of laser radiation is now termed ‘Photobiomodulation’. We found many parallels between the reported biological effects of lasers and a multiface-ted growth factor, Transforming Growth Factor-β (TGF-β). This review outlines the interestingparallelsbetween the twofieldsand our rationalefor pursuingtheir potential causal correlation. We explored this correlation using an in vitro assay systems and a human clinical trial on healing wound extraction sockets that we reported in a recent publication. In conclusion we report that low power laser irradiation can activate latent TGF-β1 and β3 complexes and suggest that this might be one of the major modes of the photobiomodulatory effects of low power lasers.
Resumo:
Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.
Resumo:
Properties of nanoparticles are size dependent, and a model to predict particle size is of importance. Gold nanoparticles are commonly synthesized by reducing tetrachloroauric acid with trisodium citrate, a method pioneered by Turkevich et al (Discuss. Faraday Soc. 1951, 11, 55). Data from several investigators that used this method show that when the ratio of initial concentrations of citrate to gold is varied from 0.4 to similar to 2, the final mean size of the particles formed varies by a factor of 7, while subsequent increases in the ratio hardly have any effect on the size. In this paper, a model is developed to explain this widely varying dependence. The steps that lead to the formation of particles are as follows: reduction of Au3+ in solution, disproportionation of Au+ to gold atoms and their nucleation, growth by disproportionation on particle surface, and coagulation. Oxidation of citrate results in the formation of dicarboxy acetone, which aids nucleation but also decomposes into side products. A detailed kinetic model is developed on the basis of these steps and is combined with population balance to predict particle-size distribution. The model shows that, unlike the usual balance between nucleation and growth that determines the particle size, it is the balance between rate of nucleation and degradation of dicarboxy acetone that determines the particle size in the citrate process. It is this feature that is able to explain the unusual dependence of the mean particle size on the ratio of citrate to gold salt concentration. It is also found that coagulation plays an important role in determining the particle size at high concentrations of citrate.
Resumo:
Research on business growth has been criticized for methodological weaknesses. We present a mediated moderation growth model as a new methodological approach. We hypothesized that small business managers' age negatively affects business growth through focus on opportunities. We sampled 201 small business managers and obtained firm performance data over 5 years, resulting in 836 observations. Growth modeling showed systematic differences in firm performance trajectories. These differences could be explained by modeling focus on opportunities as a mediator of the relationship between small business managers' age and business growth. The study illustrates how mediation models can be tested using growth modeling.
Resumo:
Electron transport and respiratory pathways are active in both latent and rapidly growing mycobacteria and remain conserved in all mycobacterial species. In mycobacteria, menaquinone is the sole electron carrier responsible for electron transport. Menaquinone biosynthesis pathway is found to be essential for the growth of mycobacteria. Structural analogs of the substrate or product of this pathway are found to be inhibitory for the growth of Mycobacterium,smegmatis and M. tuberculosis. Several plumbagin [5-hydroxy-2-methyl-1, 4-naphthaquinone] derivatives have been analyzed for their inhibitory effects of which butyrate plumbagin was found to be most effective on M. smegmatis mc2155, whereas crotonate plumbagin showed greater activity on M. tuberculosis H37Rv. Effect on electron transport and respiration was demonstrated by butyrate plumbagin inhibiting oxygen consumption in M. smegmatis. Structural modifications of these molecules can further be improved upon to generate new molecules against mycobacteria.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Cuscuta stem (vines) exhibits two modes of growth—longitudinal elongation forming free-hanging vines, or coiling growth to twine around the host. The elongation zone of free-hanging vine extended up to 160 mm from the stem apex and in vivo growth rate (during 8 h of growth) was maximal in the 20-to-40-mm region. While gibberellic acid (GA3) or fusicoccin (FC) could maintain (GA3) or enhance (FC) the growth rate of apical (10 or 25 mm) segments, indole-3-acetic acid (IAA) (10 mgrM) induced growth only in subapical (5–160 mm) segments. In vitro growth rate induced by IAA (10 mgrM) was similar to the in vivo growth rate up to 40 mm. Thereafter, up to 100 mm, IAA induced growth rate exceeded in vivo growth. p ]Subapical segments (sim13 mm) from 5- to 40-mm regions responded to a cytokinin (BA, Z, or iP) or to low IAA (0.1 mgrM) with curved growth, whereas the segments grew straight in the presence of high IAA (10 mgrM). Curvature (measured as the angle subtended at the center of the circle of which the segment formed an arc) induced by BA and low (0.1 mgrM) IAA was greater than either added separately. Besides, segments induced to curve in BA + low-IAA solution could be made to straighten out by transferring to a solution containing high IAA (10 mgrM) with or without BA. Thus in vivo patterns of straight and coiling growth could be mimicked reversibly in vitro by adjusting the relative concentrations of cytokinin and auxin; low auxin and cytokinin induced coiling growth, whereas high auxin and cytokinin induced straight growth. p ]Beyond 40 mm, BA had no growth-promoting or curvative-inducing effect.Cuscuta vine segments thus showed sequential sensitivity to applied hormones, the apical region (0–25 mm) to GA3, the subapical (5–40 mm) region to BA and IAA and the region beyond (40–160 mm) to IAA alone.
Resumo:
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 - 2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 - 2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434-3.442 eV. The film grown at 800 degrees C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The time evolution of colloidal gold particles in the nanometric regime has been investigated by employing electron microscopy and electronic absorption spectroscopy. The particle size distributions are essentially Gaussian and show the same time dependence for both the mean and the standard deviation, enabling us to obtain a time-independent universal curve for the particle size. Temperature dependent studies show the growth to be an activated process with a barrier of about 18 kJ mol(-1). We present a phenomenological equation for the evolution of particle size and suggest that the growth process is stochastic.
Resumo:
Angiogenin belongs to the Ribonuclease superfamily and has a weak enzymatic activity that is crucial for its biological function of stimulating blood vessel growth. Structural studies on ligand bound Angiogenin will go a long way in understanding the mechanism of the protein as well as help in designing drugs against it. In this study we present the first available structure of nucleotide ligand bound Angiogenin obtained by computer modeling. The importance of this study in itself notwithstanding, is a precursor to modeling a full dinucleotide substrate onto Angiogenin. Bovine Angiogenin, the structure of which has been solved at a high resolution, was earlier subjected to Molecular Dynamics simulations for a nanosecond. The MD structures offer better starting points for docking as they offer lesser obstruction than the crystal structure to ligand binding. The MD structure with the least serious short contacts was modeled to obtain a steric free Angiogenin - 3' mononucleotide complex structure. The structures were energetically minimized and subjected to a brief spell of Molecular Dynamics. The results of the simulation show that all the li,ligand-Angiogenin interactions and hydrogen bonds are retained, redeeming the structure and docking procedure. Further, following ligand - protein interactions in the case of the ligands 3'-CMP and 3'-UMP we were able to speculate on how Angiogenin, a predominantly prymidine specific ribonuclease prefers Cytosine to Uracil in the first base position.
Resumo:
A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.
Resumo:
In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.
Resumo:
The transport processes of the dissolved chemicals in stratified or layered soils have been studied for several decades. In case of the solute transport through stratified layers, interface condition plays an important role in determining appropriate transport parameters. First‐ type and third‐ type interface conditions are generally used in the literature. A first‐type interface condition will result in a continuous concentration profile across the interface at the expense of solute mass balance. On the other hand, a discontinuity in concentration develops when a third‐ type interface condition is used. To overcome this problem, a combined first‐ and third‐ type condition at the interface has been widely employed which yields second‐ type condition. This results in a similar break‐through curve irrespective of the layering order, which is non‐physical. In this work, an interface condition is proposed which satisfies the mass balance implicitly and brings the distinction between the breakthrough curves for different layering sequence corroborating with the experimental observations. This is in disagreement with the earlier work by H. M. Selim and co‐workers but, well agreement with the hypothetical result by Bosma and van der Zee; and Van der Zee.
Resumo:
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.