484 resultados para lamina
Resumo:
Scanning electron microscope (SEM)-based analyses of the laminated diatom oozes encountered during Leg 138 reveal three major laminae types. The first lamina type is composed of multiple layers of ~20-?m-thick diatom mats, which form laminae dominated by assemblages of the pennate diatom, Thalassiothrix longissima. More than one variety/subspecies of T. longissima occurs within these laminae (referred to as the T. longissima Group). The second lamina type is composed of a mixed-assemblage of several species of diatoms (centric and pennate varieties), calcareous nannofossils, and subordinate quantities of radiolarians, silicoflagellates and foraminifers. The third lamina type is dominated by an assemblage of nannofossils and minor amounts of those fossil components mentioned above. This last form of lamination is compositionally similar to the background sediment type, foraminifernannofossil ooze (F-NO). Two lamina associations occur within the laminated intervals; the first comprises alternations of T. longissima Group and mixed-assemblage laminae (average thickness is ~6 mm) and the second is composed of T. longissima and nannofossil-rich laminae (average thickness is ~3.5 mm). The arrangement of laminae probably originates from the deposition of multiple layers of 20-?m-thick mats from one mat-flux episode. The much thinner nannofossil-rich laminae are interpreted to represent periods of more ônormalö deposition between mat-flux episodes. The occurrence of several varieties/subspecies of T. longissima within individual mat layers is consistent with observations of Rhizosolenia diatom mats in the modern world ocean.
Resumo:
Sediments from holes drilled at 11 sites in the northern Gulf of Mexico during Deep Sea Drilling Project Leg 96 were analyzed for calcareous nannofossil content. All sediments recovered are Holocene and late Pleistocene in age and are within the Emiliania huxleyi Zone. The datum level represented by the lowest stratigraphic occurrence of dominant E. huxleyi occurs at two sites (Sites 615 and 619) and can be dated at approximately 84,000 yr. ago at Site 619. Reworked Cretaceous nannofossils are generally common or abundant and dominate the floral assemblages of the late Wisconsin glacial sediments. When present, indigenous late Quaternary species are rare or few in abundance. Slight increases in the contemporaneous Quaternary component of the floral assemblages can be documented by the use of a calculated in s/fu/reworked ratio. This ratio, based on the relative abundances of the indigenous Quaternary taxa and reworked taxa, shows potential both for local correlations between drill sites and for correlation with glacio-eustatic fluctuations during the late Pleistocene.
Resumo:
Nearly continuous cores of Quaternary fine-grained sediments with distinct dark-light colored cycles were recovered from Sites 794, 795, and 797 in the basinal parts of the Japan Sea during Leg 127. A comparison of gray value (darkness) profiles supplemented by visual inspection of core photographs between sites indicated that most of the dark and light layers were correlatable between sites, and that two of the dark layers lie close to adjacent marker ash layers. These observations indicate that deposition of dark and light layers resulted from basin-wide synchronous events. In order to understand the origin of these dark-light cycles, petrographical, mineralogical, compositional, and paleontological studies were carried out on closely spaced samples from the upper Quaternary sediments recovered from Site 797. Age model was constructed based on comparison between variation in diatom abundance and the standard oxygen isotope curve of Imbrie et al. (1984), the latter was interpolated between the five age controlled levels established at Site 797. The two curves show similar patterns which enabled us to "tune" the sediment ages to the oxygen isotope stages. We have to use variation in diatom abundance as a substitute for oxygen isotope curve since oxygen isotopic data are not available at the studied sites. Bottom water oxygenation conditions were estimated based on two criteria: (1) the degree of lamina preservation and (2) the ratio of Corg to Stot. The surface water productivity was deduced from the Corg and biogenic silica content. Results suggest that the bottom water oxygenation level and the surface water productivity varied significantly in response to the glacial-interglacial cycles. Glacio-eustatic sea-level changes and subsequent changes in water circulation in the Japan Sea appear to have been responsible for these variations and consequent changes in sediment composition throughout the Quaternary.
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.