990 resultados para joint motion
Resumo:
Reseña del congreso WePreserve 2009 que tuvo lugar los pasados 23 al 27 de marzo en Barcelona, organizadopor la Facultad de Biblioteconomía y Documentación de la Universitat de Barcelona, con la colaboración del Institut d'Estudis Catalans, la Biblioteca de Catalunya y el Consorci de Biblioteques de Barcelona. El seminario 2009 WePreserve se celebra anualmente desde el año 2007 y participan todas las figuras de referencia europeas en materia de investigación en sistemas y metodologías que garantizan la preservación digital de los documentos: Digital Preservation Europe (DPE), Preservation and Long-term Access Through Networked Services (Planets), Cultural Artistic and Scientific Knowledge for Preservation, Access and Retrieval (CASPAR), y Network of expertise in Digital long-term preservation (nestor).
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
Infections after total joint arthroplasty are rare but come with severe consequences. Timely, adequate and standardized treatment beginning at the onset of symptoms will have a major impact on the handling of this dreaded complication. In absences of clear guidelines, errors are often committed, with occasionally severe consequences for the patient. In this article, the 10 most frequent errors starting with diagnostics till antibiotic and surgical treatment will be discussed.
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
Thanks to decades of research, gait analysis has become an efficient tool. However, mainly due to the price of the motion capture systems, standard gait laboratories have the capability to measure only a few consecutive steps of ground walking. Recently, wearable systems were proposed to measure human motion without volume limitation. Although accurate, these systems are incompatible with most of existing calibration procedures and several years of research will be necessary for their validation. A new approach consisting of using a stationary system with a small capture volume for the calibration procedure and then to measure gait using a wearable system could be very advantageous. It could benefit from the knowledge related to stationary systems, allow long distance monitoring and provide new descriptive parameters. The aim of this study was to demonstrate the potential of this approach. Thus, a combined system was proposed to measure the 3D lower body joints angles and segmental angular velocities. It was then assessed in terms of reliability towards the calibration procedure, repeatability and concurrent validity. The dispersion of the joint angles across calibrations was comparable to those of stationary systems and good reliability was obtained for the angular velocities. The repeatability results confirmed that mean cycle kinematics of long distance walks could be used for subjects' comparison and pointed out an interest for the variability between cycles. Finally, kinematics differences were observed between participants with different ankle conditions. In conclusion, this study demonstrated the potential of a mixed approach for human movement analysis.
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
This letter presents a comparison between threeFourier-based motion compensation (MoCo) algorithms forairborne synthetic aperture radar (SAR) systems. These algorithmscircumvent the limitations of conventional MoCo, namelythe assumption of a reference height and the beam-center approximation.All these approaches rely on the inherent time–frequencyrelation in SAR systems but exploit it differently, with the consequentdifferences in accuracy and computational burden. Aftera brief overview of the three approaches, the performance ofeach algorithm is analyzed with respect to azimuthal topographyaccommodation, angle accommodation, and maximum frequencyof track deviations with which the algorithm can cope. Also, ananalysis on the computational complexity is presented. Quantitativeresults are shown using real data acquired by the ExperimentalSAR system of the German Aerospace Center (DLR).
Resumo:
BACKGROUND: Serial casting is often prescribed after botulinum toxin injections to improve joint ranges of motion and to potentiate the decrease in hypertonia. The aim of this study was to compare delayed versus immediate serial casting as an adjunct to botulinum toxin therapy for partially reducible spastic equinus. METHODS: Twelve children who presented spastic equinus associated with mild gastrosoleus contracture took part. Five of them had a diagnosis of spastic diplegia, whereas 7 had a diagnosis of congenital hemiplegia. Children were randomized to immediate serial casting (same day) or delayed serial casting (4 weeks later) after botulinum toxin injection to their gastrosolei. Casts were replaced weekly for 3 weeks. RESULTS: Three children complained of pain that required recasting in the immediate casting group versus none in the delayed casting group (P = 0.08). At 3 months, there was a 27-degree improvement in the fast dorsiflexion angle (Tardieu R1) in the delayed casting group versus 17 degrees in the immediate casting group (P = 0.029). At 6 months, a 19-degree improvement persisted in the delayed group compared with 11 degrees in the immediate group (P = 0.010). CONCLUSIONS: There is a clear benefit in delaying serial casting after the injection of botulinum toxin in the recurrence of spasticity at the gastrosoleus that may also offer an advantage regarding the incidence of painful episodes associated with casting. Most importantly, reducing the recurrence of spasticity by delayed serial casting may offer the possibility of decreasing the frequency of botulinum toxin reinjections.
Resumo:
Given the significant impact the use of glucocorticoids can have on fracture risk independent of bone density, their use has been incorporated as one of the clinical risk factors for calculating the 10-year fracture risk in the World Health Organization's Fracture Risk Assessment Tool (FRAX(®)). Like the other clinical risk factors, the use of glucocorticoids is included as a dichotomous variable with use of steroids defined as past or present exposure of 3 months or more of use of a daily dose of 5 mg or more of prednisolone or equivalent. The purpose of this report is to give clinicians guidance on adjustments which should be made to the 10-year risk based on the dose, duration of use and mode of delivery of glucocorticoids preparations. A subcommittee of the International Society for Clinical Densitometry and International Osteoporosis Foundation joint Position Development Conference presented its findings to an expert panel and the following recommendations were selected. 1) There is a dose relationship between glucocorticoid use of greater than 3 months and fracture risk. The average dose exposure captured within FRAX(®) is likely to be a prednisone dose of 2.5-7.5 mg/day or its equivalent. Fracture probability is under-estimated when prednisone dose is greater than 7.5 mg/day and is over-estimated when the prednisone dose is less than 2.5 mg/day. 2) Frequent intermittent use of higher doses of glucocorticoids increases fracture risk. Because of the variability in dose and dosing schedule, quantification of this risk is not possible. 3) High dose inhaled glucocorticoids may be a risk factor for fracture. FRAX(®) may underestimate fracture probability in users of high dose inhaled glucocorticoids. 4) Appropriate glucocorticoid replacement in individuals with adrenal insufficiency has not been found to increase fracture risk. In such patients, use of glucocorticoids should not be included in FRAX(®) calculations.
Resumo:
Introduction: Ankle arthropathy is associated with a decreased motion of the ankle-hindfoot during ambulation. Ankle arthrodesis was shown to result in degeneration of the neighbour joints of the foot. Inversely, total ankle arthroplasty conceptually preserves the adjacent joints because of the residual mobility of the ankle but this has not been demonstrated yet in vivo. It has also been reported that degenerative ankle diseases, and even arthrodesis, do not result in alteration of the knee and hip joints. We present the preliminary results of a new approach of this problem based on ambulatory gait analysis. Patients and Methods: Motion analysis of the lower limbs was performed using a Physilog® (BioAGM, CH) system consisting of three-dimensional (3D) accelerometer and gyroscope, coupled to a magnetic system (Liberty©, Polhemus, USA). Both systems have been validated. Three groups of two patients were included into this pilot study and compared to healthy subjects (controls) during level walking: patients with ankle osteoarthritis (group 1), patients treated by ankle arthrodesis (group 2), patients treated by total ankle prosthesis (group 3). Results: Motion patterns of all analyzed joints over more than 20 gait cycles in each subject were highly repeatable. Motion amplitude of the ankle-hindfoot in control patients was similar to recently reported results. Ankle arthrodesis limited the motion of the ankle-hindfoot in the sagittal and horizontal planes. The prosthetic ankle allowed a more physiologic movement in the sagittal plane only. Ankle arthritis and its treatments did not influence the range of motion of the knee and hip joint during stance phase, excepted for a slight decrease of the hip flexion in groups 1 and 2. Conclusion: The reliability of the system was shown by the repeatability of the consecutive measurements. The results of this preliminary study were similar to those obtained through laboratory gait analysis. However, our system has the advantage to allow ambulatory analysis of 3D kinematics of the lower limbs outside of a gait laboratory and in real life conditions. To our knowledge this is a new concept in the analysis of ankle arthropathy and its treatments. Therefore, there is a potential to address specific questions like the difficult comparison of the benefits of ankle arthroplasty versus arthrodesis. The encouraging results of this pilot study offer the perspective to analyze the consequences of ankle arthropathy and its treatments on the biomechanics of the lower limbs ambulatory, in vivo and in daily life conditions.