965 resultados para ionic liq emulsion oil sepn
Resumo:
The enzyme, D-xylose isomerase (D-xylose keto-isomerase; EC 5.3.1.5) is a soluble enzyme that catalyzes the conversion of the aldo-sugar D-xylose to the keto-sugar D-xylulose. A total of 27 subunits of D-xylose isomerase from Streptomyces rubiginosus were analyzed in order to identify the invariant water molecules and their water-mediated ionic interactions. A total of 70 water molecules were found to be invariant. The structural and/or functional roles of these water molecules have been discussed. These invariant water molecules and their ionic interactions may be involved in maintaining the structural stability of the enzyme D-xylose isomerase. Fifty-eight of the 70 invariant water molecules (83%) have at least one interaction with the main chain polar atom.
Resumo:
Ionic Polymer Metal Composites (IPMCs) are a class of Electro-Active Polymers (EAPs) consisting of a base polymer (usually Nafion), sandwiched between thin films of electrodes and an electrolyte. Apart from fuel cell like proton exchange process in Nafion, these IPMCs can act both as an actuator and a sensor. Typically, IPMCs have been known for their applications in fuel cell technology and in artificial muscles for robots. However, more recently, sensing properties of IPMC have opened up possibilities of mechanical energy harvesting. In this paper, we consider a bi-layer stack of IPMC membranes where fluid flow induced cyclic oscillation allows collection of electronic charge across a pair of functionalized electrode on the surface of IPMC layers/stacks. IPMCs work well in hydrated environment; more specifically, in presence of an electrolyte, and therefore, have great potential in underwater applications like hydrodynamic energy harvesting. Hydrodynamic forces produce bending deformation, which can induce transport of cations via polymer chains of the base polymer of Nafion or PTFE. In our experimental set-up, the deformation is induced into the array of IPMC membranes immersed in electrolyte by water waves caused by a plunger connected to a stepper motor. The frequency and amplitude of the water waves is controlled by the stepper motor through a micro-controller. The generated electric power is measured across a resistive load. Few orders of magnitude increase in the harvested power density is observed. Analytical modeling approach used for power and efficiency calculations are discussed. The observed electro-mechanical performance promises a host of underwater energy harvesting applications.
Resumo:
A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.
Resumo:
Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.
Resumo:
The miniaturization of electronic and ionic devices with thermionic cathodes and thc improvement of their vacuum properties are questions of very great interest to the electronic engineer. However there have bcen no proposals so far to analyse the problem of miniaturization of such devices In a fundamental way. The present work suggests a choice of the geometrical shape of the cathode, the anode and the envelope of the device, that may help towards such a fundamcnlal approach.It is shown that a design, in which the cathode and the envelope of the tube are made of thm prismatic shape and the anode coincides with the cnvclope, offers a slriknrg advantage over the conventional cylindrical design, in respect of over-all size. The use of the prismatic shape will lead to considerable economy in msterials and may facilitate simpler prodoct~ont echn~ques. I n respect of the miin criteria of vacuum, namely the grade of vacuum, the internal volume occupied by residual gases, the evolution of gases in the internal space and the diffusion of gases from outside into the devicc, it is shown that the prismatic form is at least as good as, if not somewhat superior lo, the cylindrical form.In the actual construction of thin prismatic tubes, manv practical problems will arise, the most important being the mechanical strength and stablity of the structure. But the changeover from the conventional cylindrical to the new prirmaiic form, with its basic advantages, is a development that merits close attention.
Resumo:
An attempt has been made to use the indigeneous oils-Bombax Malabarica oil and Shark liver oil in the form of sodium soaps as collectors in the flotation of quartz using barium chloride as activator. The effect of pH, collector concentration and activator concentration on the flotation of quartz is studied in a Leaf and knoll flotation cell. The experiments show that it is possible to obtain 98.0 per cent of quartz as float using 10 mg. of Bombax. Malabarica oil and Shark liver oil soaps at pH values of more than 7.0 and when barium ion concentration is in excess of that required to form barium soaps. Bombax Malabarica oil is found to be superior to Shark liver oil as collector in the flotation of quartz.
Resumo:
The presence of moisture in oil impregnated paper insulation (OIP) is detrimental to its long time performance. Until recently, it was thought insulation ageing was only a function of temperature and electrical stress. It has now been realized that moisture in all its forms causes rapid degradation of the electrical and mechanical properties with time. In this study, insulation paper samples were conditioned for desired level of moisture and were impregnated with premium quality transformer oil. The oil impregnated samples with 1 to 3 % moisture content were aged at 90 to 130 C. The indices for determining the extent of ageing considered in this work are degree of polymerization (DP), furan, carbon monoxide and carbon dioxide content. These quantities were monitored throughout the ageing experimental run. End-of-life (EOL) criterion used here is the reduction in the value of DP. Phenomenological models for estimating the service life of insulation are proposed and are validated against actual experimental data.
Resumo:
Background: DNA-binding protein from starved cells (Dps) are nano-compartments that can oxidize and store iron rendering protection from free radicals. Results: A histidine-aspartate ionic cluster in mycobaterial Dps2 modulates the rate of iron entry and exit in these proteins. Conclusion: Substitutions that disrupt the cluster interface alter the iron uptake/release properties with localized structural changes. Significance: Identifying important gating residues can help in designing nano-delivery vehicles. Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 for the various mutants to compare structural alterations vis a vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.
Resumo:
A family of high molecular weight castor oil (CO)-based biodegradable polyanhydrides was synthesized by a catalyst-free melt-condensation reaction between prepolymers of CO and sebacic acid (SA). The structure of the polymers was characterized by H-1 NMR and Fourier transform infrared spectroscopy, which indicated the formation of the anhydride bond along the polymer backbone. Thermal analysis and X-ray diffraction confirmed the semicrystalline nature of the polymers. Incorporation of SA enhanced the crystallinity of the polymer. The hydrophobic nature of these polymers was revealed by contact angle goniometry. Water wettability decreased with increase in SA content. Compressive tests demonstrated a sharp increase in strength and decrease in ductility with increasing SA content. In vitro hydrolytic degradation studies indicated surface-eroding behavior. The degradation rate decreased with an increase of SA content in the polymers because of increased crystallinity. The release studies of both hydrophobic and hydrophilic dyes followed zero-order kinetics. In vitro cell studies to assess the cytotoxicity of the polymer confirmed minimal toxicity of the degradation products. Thus, a family of CO-SA polyanhydrides have been synthesized and characterized for controlled release applications where the physical, mechanical, and degradation kinetics can be modulated by varying the weight fraction of the prepolymers.
Resumo:
This study reports a simple, efficient and versatile protocol developed for NMR spectroscopic enantiodiscrimination of molecules containing diverse functional -groups, such as amino alcohols, secondary alcohols, cyanohydrins, oxazolidones, diols, thiones and epoxides, using a phosphorous based three component mixture. The simple mixing and shaking of enantiopure 1,1'-binaphthyt-2,2'-diyl hydrogenphosphate (BNPA), 4-(dimethylamino)pyridine (DMAP) and a chiral analyte in the solvent CDCl3 served as a chiral solvating agent and resulted in well dispersed peaks for each enantiomer in the H-1 NMR spectrum. Discrimination could be achieved not only for the proton at the chiral centre, but also for multiple proton sites. The devised approach also permitted the precise measurement of the enantiomeric excess (ee).
Resumo:
Conventional solids are prepared from building blocks that are conceptually no larger than a hundred atoms. While van der Waals and dipole-dipole interactions also influence the formation of these materials, stronger interactions, referred to as chemical bonds, play a more decisive role in determining the structures of most solids. Chemical bonds that hold such materials together are said to be ionic, covalent, metallic, dative, or otherwise a combination of these. Solids that utilize semiconductor nanocrystal quantum dots as building units have been demonstrated to exist; however, the interparticle forces in such materials are decidedly not chemical. Here we demonstrate the formation of charge transfer states in a binary quantum dot mixture. Charge is observed to reside in quantum confined states of one of the participating quantum dots. These interactions lead to materials that may be regarded as the nanoscale analog of an ionic solid. The process by which these materials form has interesting parallels to chemical reactions in conventional chemistry.
Resumo:
Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.
Resumo:
A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.
Resumo:
In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.
Resumo:
A family of soybean oil (SO) based biodegradable cross-linked copolyesters sourced from renewable resources was developed for use as resorbable biomaterials. The polyesters were prepared by a melt condensation of epoxidized soybean oil polyol and sebacic acid with citric acid (CA) as a cross-linker. D-Mannitol (M) was added as an additional reactant to improve mechanical properties. Differential scanning calorimetry revealed that the polyester synthesized using only CA as the cross-linker was semicrystalline and elastomeric at physiological temperature. The polymers were hydrophobic in nature. The water wettability, elongation at break and the degradation rate of the polyesters decreased with increase in M content or curing time. Modeling of release kinetics of dyes showed a diffusion controlled mechanism underlies the observed sustained release from these polymers. The polyesters supported attachment and proliferation of human stem cells and were thus cytocompatible. Porous scaffolds induced osteogenic differentiation of the stern cells suggesting that these polymers are well suited for bone tissue engineering. Thus, this family of polyesters offers a low cost and green alternative as biocompatible, bioresobable polymers for potential use as resorbable biomaterials for tissue engineering and controlled release.