952 resultados para information criteria
Resumo:
Purpose – The purpose of this paper is to examine the use of bid information, including both price and non-price factors in predicting the bidder’s performance. Design/methodology/approach – The practice of the industry was first reviewed. Data on bid evaluation and performance records of the successful bids were then obtained from the Hong Kong Housing Department, the largest housing provider in Hong Kong. This was followed by the development of a radial basis function (RBF) neural network based performance prediction model. Findings – It is found that public clients are more conscientious and include non-price factors in their bid evaluation equations. With the input variables used the information is available at the time of the bid and the output variable is the project performance score recorded during work in progress achieved by the successful bidder. It was found that past project performance score is the most sensitive input variable in predicting future performance. Research limitations/implications – The paper shows the inadequacy of using price alone for bid award criterion. The need for a systemic performance evaluation is also highlighted, as this information is highly instrumental for subsequent bid evaluations. The caveat for this study is that the prediction model was developed based on data obtained from one single source. Originality/value – The value of the paper is in the use of an RBF neural network as the prediction tool because it can model non-linear function. This capability avoids tedious ‘‘trial and error’’ in deciding the number of hidden layers to be used in the network model. Keywords Hong Kong, Construction industry, Neural nets, Modelling, Bid offer spreads Paper type Research paper
Resumo:
The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.
Resumo:
An examination of Information Security (IS) and Information Security Management (ISM) research in Saudi Arabia has shown the need for more rigorous studies focusing on the implementation and adoption processes involved with IS culture and practices. Overall, there is a lack of academic and professional literature about ISM and more specifically IS culture in Saudi Arabia. Therefore, the overall aim of this paper is to identify issues and factors that assist the implementation and the adoption of IS culture and practices within the Saudi environment. The goal of this paper is to identify the important conditions for creating an information security culture in Saudi Arabian organizations. We plan to use this framework to investigate whether security culture has emerged into practices in Saudi Arabian organizations.
Resumo:
Understanding the complex dynamic and uncertain characteristics of organisational employees who perform authorised or unauthorised information security activities is deemed to be a very important and challenging task. This paper presents a conceptual framework for classifying and organising the characteristics of organisational subjects involved in these information security practices. Our framework expands the traditional Human Behaviour and the Social Environment perspectives used in social work by identifying how knowledge, skills and individual preferences work to influence individual and group practices with respect to information security management. The classification of concepts and characteristics in the framework arises from a review of recent literature and is underpinned by theoretical models that explain these concepts and characteristics. Further, based upon an exploratory study of three case organisations in Saudi Arabia involving extensive interviews with senior managers, department managers, IT managers, information security officers, and IT staff; this article describes observed information security practices and identifies several factors which appear to be particularly important in influencing information security behaviour. These factors include values associated with national and organisational culture and how they manifest in practice, and activities related to information security management.
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
This qualitative study views international students as information-using learners, through an information literacy lens. Focusing on the experiences of 25 international students at two Australian universities, the study investigates how international students use online information resources to learn, and identifies associated information literacy learning needs. An expanded critical incident approach provided the methodological framework for the study. Building on critical incident technique, this approach integrated a variety of concepts and research strategies. The investigation centred on real-life critical incidents experienced by the international students whilst using online resources for assignment purposes. Data collection involved semi-structured interviews and an observed online resource-using task. Inductive data analysis and interpretation enabled the creation of a multifaceted word picture of international students using online resources and a set of critical findings about their information literacy learning needs. The study’s key findings reveal: • the complexity of the international students’ experience of using online information resources to learn, which involves an interplay of their interactions with online resources, their affective and reflective responses to using them, and the cultural and linguistic dimensions of their information use. • the array of strengths as well as challenges that the international students experience in their information use and learning. • an apparent information literacy imbalance between the international students’ more developed information skills and less developed critical and strategic approaches to using information • the need for enhanced information literacy education that responds to international students’ identified information literacy needs. Responding to the findings, the study proposes an inclusive informed learning approach to support reflective information use and inclusive information literacy learning in culturally diverse higher education environments.
Resumo:
This paper investigates self–Googling through the monitoring of search engine activities of users and adds to the few quantitative studies on this topic already in existence. We explore this phenomenon by answering the following questions: To what extent is the self–Googling visible in the usage of search engines; is any significant difference measurable between queries related to self–Googling and generic search queries; to what extent do self–Googling search requests match the selected personalised Web pages? To address these questions we explore the theory of narcissism in order to help define self–Googling and present the results from a 14–month online experiment using Google search engine usage data.
Resumo:
In this paper, we propose an unsupervised segmentation approach, named "n-gram mutual information", or NGMI, which is used to segment Chinese documents into n-character words or phrases, using language statistics drawn from the Chinese Wikipedia corpus. The approach alleviates the tremendous effort that is required in preparing and maintaining the manually segmented Chinese text for training purposes, and manually maintaining ever expanding lexicons. Previously, mutual information was used to achieve automated segmentation into 2-character words. The NGMI approach extends the approach to handle longer n-character words. Experiments with heterogeneous documents from the Chinese Wikipedia collection show good results.
Resumo:
Objective: To summarise the extent to which narrative text fields in administrative health data are used to gather information about the event resulting in presentation to a health care provider for treatment of an injury, and to highlight best practise approaches to conducting narrative text interrogation for injury surveillance purposes.----- Design: Systematic review----- Data sources: Electronic databases searched included CINAHL, Google Scholar, Medline, Proquest, PubMed and PubMed Central.. Snowballing strategies were employed by searching the bibliographies of retrieved references to identify relevant associated articles.----- Selection criteria: Papers were selected if the study used a health-related database and if the study objectives were to a) use text field to identify injury cases or use text fields to extract additional information on injury circumstances not available from coded data or b) use text fields to assess accuracy of coded data fields for injury-related cases or c) describe methods/approaches for extracting injury information from text fields.----- Methods: The papers identified through the search were independently screened by two authors for inclusion, resulting in 41 papers selected for review. Due to heterogeneity between studies metaanalysis was not performed.----- Results: The majority of papers reviewed focused on describing injury epidemiology trends using coded data and text fields to supplement coded data (28 papers), with these studies demonstrating the value of text data for providing more specific information beyond what had been coded to enable case selection or provide circumstantial information. Caveats were expressed in terms of the consistency and completeness of recording of text information resulting in underestimates when using these data. Four coding validation papers were reviewed with these studies showing the utility of text data for validating and checking the accuracy of coded data. Seven studies (9 papers) described methods for interrogating injury text fields for systematic extraction of information, with a combination of manual and semi-automated methods used to refine and develop algorithms for extraction and classification of coded data from text. Quality assurance approaches to assessing the robustness of the methods for extracting text data was only discussed in 8 of the epidemiology papers, and 1 of the coding validation papers. All of the text interrogation methodology papers described systematic approaches to ensuring the quality of the approach.----- Conclusions: Manual review and coding approaches, text search methods, and statistical tools have been utilised to extract data from narrative text and translate it into useable, detailed injury event information. These techniques can and have been applied to administrative datasets to identify specific injury types and add value to previously coded injury datasets. Only a few studies thoroughly described the methods which were used for text mining and less than half of the studies which were reviewed used/described quality assurance methods for ensuring the robustness of the approach. New techniques utilising semi-automated computerised approaches and Bayesian/clustering statistical methods offer the potential to further develop and standardise the analysis of narrative text for injury surveillance.
Resumo:
The Queensland Injury Surveillance Unit (QISU) has been collecting and analysing injury data in Queensland since 1988. QISU data is collected from participating emergency departments (EDs) in urban, rural and remote areas of Queensland. Using this data, QISU produces several injury bulletins per year on selected topics, providing a picture of Queensland injury, and setting this in the context of relevant local, national and international research and policy. These bulletins are used by numerous government and non-government groups to inform injury prevention and practice throughout the state. QISU bulletins are also used by local and state media to inform the general public of injury risk and prevention strategies. In addition to producing the bulletins, QISU regularly responds to requests for information from a variety of sources. These requests often require additional analysis of QISU data to tailor the response to the needs of the end user. This edition of the bulletin reviews 5 years of information requests to QISU.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, an explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Webbased Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these webbased tools for collaborative decision making.
Resumo:
A commonly held belief in the IS discipline is that rigour and relevance are contrary to each other and that addressing both is virtually impossible. It is also believed widely that the editorial practices of our premier conferences and journals over-emphasise rigour on the cost of relevance. However, while these two topics have been filled with numerous subjective discussions, more solid evidence into the true relationship between rigour and relevance and the impact of conference editors on this relationship is still outstanding. This paper contributes to this debate by deriving empirical evidence from a comprehensive and detailed analysis of the characteristics of the submissions and the reviewing practices of three recent IS conferences. It provides first insights into the actual relationship between rigour and relevance and into the role conference chairs play in balancing rigour and relevance. Besides the outcomes that the current set of evaluation criteria does not provide a straight forward proxy for relevance to practitioners, the paper offers two main contributions. First, empirical insights are provided that rigour and relevance do in fact not have to be mutually exclusive. Second, the editorial practices at conferences are skewed towards rigorous papers rather than relevant papers.
Resumo:
Recommender Systems is one of the effective tools to deal with information overload issue. Similar with the explicit rating and other implicit rating behaviours such as purchase behaviour, click streams, and browsing history etc., the tagging information implies user’s important personal interests and preferences information, which can be used to recommend personalized items to users. This paper is to explore how to utilize tagging information to do personalized recommendations. Based on the distinctive three dimensional relationships among users, tags and items, a new user profiling and similarity measure method is proposed. The experiments suggest that the proposed approach is better than the traditional collaborative filtering recommender systems using only rating data.