904 resultados para in vitro allelopathic activity
Resumo:
Neuroinflammation is a key component of Parkinson’s disease (PD) neuropathology. Skewed microglia activation with pro-inflammatory prevailing over anti-inflammatory phenotypes may contribute to neurotoxicity via the production of cytokines and neurotoxic species. Therefore, microglia polarization has been proposed as a target for neuroprotection. The peroxisome proliferator-activated receptor gamma (PPARγ) is expressed in microglia and peripheral immune cells, where it is involved in macrophages polarization and in the control of inflammatory responses, by modulating gene transcription. Several studies have shown that PPARγ agonists are neuroprotective in experimental PD models in rodents and primates. however safety concerns have been raised about PPARγ agonists thiazolidinediones (TZD) currently available, prompting for the development of non-TZD compounds. Aim of this study was to characterize a novel PPARγ agonist non TZD, MDG548, for its potential neuroprotective effect in PD models and its immunomodulatory activity as the underlying mechanism of neuroprotection. The neuroprotective activity of MDG548 was assessed in vivo in the subacute MPTP model and in the chronic MPTP/probenecid (MPTPp) model of PD. MDG548 activity on microglia activation and phenotype was investigated in the substantia nigra pars compacta (SNc) via the evaluation of pro- (TNF-α and iNOS) and anti-inflammatory (CD206) molecules, with fluorescent immunohistochemistry. Moreover, cultured murine microglia MMGT12 were treated with MDG548 in association with the inflammagen LPS, pro- and anti-inflammatory molecules were measured in the medium by ELISA assay and phagocytosis was evaluated by fluorescent immunohistochemistry for CD68. MDG548 arrested dopaminergic cells degeneration in the SNc in both the subacute MPTP and the chronic MPTPp models of PD, and reverted MPTPp-induced motor impairment. Moreover, MDG548 reduced microglia activation, iNOS and TNF-α production, while induced CD206 in microglia. In cultured unstimulated microglia, LPS increased TNF-α production and CD68 expression, while decreased CD206 expression. MDG548 reverted LPS effect on TNF-α and CD206 restoring physiological levels, while strongly increased CD68 expression. Results suggest that the PPARγ agonist MDG548 is neuroprotective in experimental models of PD. MDG548 targets microglia polarization by correcting the imbalance between pro- over antiinflammatory molecules, offering a novel immunomodulatory approach to neuroprotection.
Resumo:
Seaweeds contain a range of antioxidant compounds such as polyphenols, carotenoids, sulphated polysaccharides and vitamins and have the potential to be used as ingredients in neutraceuticals. The antioxidant activity of crude 60% methanol extracts prepared from five Irish seaweeds, Ascophyllum nodosum, Laminaria hyperborea, Pelvetia canaliculata, Fucus vesiculosus and Fucus serratus were examined using in-vitro assays and a cell model system to determine the antioxidant activity of the extracts and their ability to protect against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status in the human adenocarcinoma, Caco-2 cell line. To optimise the extraction of antioxidant compounds from seaweeds, an accelerated solvent extraction (ASE®) was used in combination with food grade solvents. The antioxidant activity of these extracts against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status was also assessed. Extracts that exhibited the highest antioxidant activity, A. nodosum (100% water and 80% ethanol extracts) and F. vesiculosus (60% ethanol extract) were selected as ingredients for incorporation into fluid milk and yogurt at concentrations of 0.25% and 0.5%. The addition of the seaweed extracts to milk and yogurt did not affect the pH or shelf-life properties of the products. Seaweed addition did however significantly influence the colour properties of the milk and yogurt. Yellowness values were significantly higher in yogurts containing F. vesiculosus at both concentrations and A. nodosum (80% ethanol) at the 0.5% concentration. In milk, the F. vesiculosus (60% ethanol) and A. nodosum (80% ethanol) at both the 0.25% and the 0.5% concentrations had higher greenness and yellowness values than the milk containing A. nodosum (100% water). Sensory analysis revealed that appearance and flavour governed the overall acceptability of yogurts with the control yogurt, and yogurts containing A. nodosum (100% water) were the most preferred samples by panellists. However, in the milk trial the perception of a fishy taste was the determining factor in the negative perception of milk. The unsupplemented control and the milk containing A. nodosum (100% water) at a concentration of 0.5% were the most overall accepted milk samples by the sensory panellists. The antioxidant activity of the extracts in milk and yogurt remained stable during storage as determined by the in-vitro assays. Seaweed supplemented milk and yogurt were also subjected to an in-vitro digestion procedure which mimics the human digestive system. The milk and yogurt samples and their digestates were added to Caco-2 cells to investigate their antioxidant potential however neither the undigested or digested samples protected against H2O2-induced DNA damage in Caco-2 cells.
Resumo:
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by polyclonal B cell activation and by the production of anti-double-stranded (ds) DNA antibodies. Given the inhibitory effects of IL-12 on humoral immune responses, we investigated whether IL-12 displayed such an activity on in vitro immunoglobulin production by SLE PBMC. Spontaneous IgG, IgG1, IgG2, IgG3 and IgM antibody production was dramatically reduced by addition of IL-12. These results were confirmed by Elispot assays detecting IgG- and anti-dsDNA-secreting cells. While IL-6 and TNF titres measured in PBMC supernatants were not modified by addition of IL-12, interferon-gamma (IFN-gamma) titres were up-regulated and IL-10 production down-regulated. Since addition of IFN-gamma did not down-regulate immunoglobulin production and since the inhibitory activity of IL-12 on immunoglobulin synthesis was not suppressed by anti-IFN-gamma antibody, we concluded that the effect of IL-12 on immunoglobulin production was not mediated through IFN-gamma. Our data also argue against the possibility that down-regulation of endogenous IL-10 production was responsible for the effect of IL-12. Thus, inhibition of IL-10 production by IFN-gamma was not accompanied by inhibition of immunoglobulin production, and conversely, restoration of IL-10 production by anti-IFN-gamma antibody did not suppress the inhibitory activity exerted by IL-12 on immunoglobulin production. Taken together, our data indicate that reduction of excessive immunoglobulin and anti-dsDNA antibody production by lupus PBMC can be achieved in vitro by IL-12, independently of IFN-gamma and IL-10 modulation.
Resumo:
Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.
Resumo:
Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.
Resumo:
BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Resumo:
Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.
Resumo:
Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala(8)-substituted analogues of GLP-1, (Abu(8))GLP-1 and (Val(8) GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu(8))GLP-1 and (Val(8))GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu(8))GLP-1 and (Val(8))GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val(8))GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu(8))GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val(8))GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala(8) in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val(8))GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.
Resumo:
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials
Resumo:
We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.
Resumo:
Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.
Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.
Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.
Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.
Resumo:
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Advanced JAX (TM) Bone Void Filler System (AJBVFS) is a novel bone graft material manufactured by Smith and Nephew Orthopaedics Ltd. and comprises beta tri-calcium phosphate granules with carboxymethylcellulose (CMC) gel as a handling agent. This study investigated the potential, in vitro, of the AJBVFS to function as a delivery system for cell therapy to enhance healing of bone defects. The attachment of rabbit bone marrow stromal cells (rbBMSCs), human BMSCs (hBMSCs) and human bone-derived cells (hBDCs) to JAX (TM) granules and the effect of CMC gel on cell proliferation and differentiation were investigated. There were slight species differences in the number and morphology of cells attached on the JAX (TM) granules with less rbBMSC attachment than human. All cells tolerated the presence of CMC gel and a reduction in cell number was only seen after longer exposure to higher gel concentrations. Low concentrations of CMC gel enhanced proliferation, alkaline phosphatase (ALP) expression and ALP activity in human cells but had no effect on rbBMSC. This study suggests that AJBVFS is an appropriate scaffold for the delivery of osteogenic cells and the addition of CMC gel as a handling agent promotes osteogenic proliferation and differentiation and is therefore likely to encourage bone healing.
Resumo:
Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.