937 resultados para hydrogenated soy phosphatidylcholine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Addendum to the Project Paper, 'Corn and soy production on small farms' ... prepared in response to STATE 160059, 'DAEC review soy and corn grant pp'."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collijn, Sveriges bibliografi, 1600-talet, I

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current success of soy foods is driving soy ingredient manufacturers to develop innovative products for food manufacturers. One such innovation is separating the soy proteins glycinin and beta-conglycinin to take advantage of their individual functional and nutritional properties. Precipitation by acidification is a low-cost method for separating these two proteins. Separation is achieved by preferentially precipitating glycinin at pH ~ 6 while beta-conglycinin remains in solution. Understanding the particle formation during protein precipitation is important as it can influence the efficiency of the precipitation process as well as subsequent downstream processes such as the particle-liquid separation step, usually achieved by centrifugation. Most of the previous soy protein precipitation studies are limited to precipitation at pH 4 as this is the pH range most commonly used in the commercial manufacturing of soy protein isolates. To date, there have been no studies on the particle formation during precipitation at pH > 5.Precipitation of soy protein is generally thought to occur by the rapid formation of primary particles in the size range of 0.1 - 0.3 microns followed by aggregation of these particles via collision to aggregates of size about 1 - 50 microns. The formation of the primary particles occurs on a time scale much shorter than that of the overall precipitation process (Nelson and Glatz, 1985). This study shows that precipitation of soy protein is indeed rapid. At high pH levels, binary liquid-liquid separation occurs forming a protein-rich heavy phase. The protein-rich phase appears as droplets which can be coalesced to form a uniform bulk layer under centrifugation forces. Upon lowering the pH level by the addition of acid, further protein is precipitated as amorphous material which binds the droplets together to form aggregates of amorphous precipitates. Liquid-liquid separation has been observed in many protein solutions but this phenomenon has only scarcely been reported in the literature for soy proteins. It presents an exciting opportunity for an innovative product. Features of the liquid-phase protein such as protein yield and purity will be characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypochlorite generated in vivo under pathological conditions is a known oxidant and chlorinating agent, able to react with proteins and lipids, which affects the stability of biological membranes. Reaction with unsaturated fatty acyl chains in glycerophospholipids such as phosphatidylcholine results in the formation of chlorohydrins. The aim of this study was to determine the effects of chlorohydrins formed by the reaction of hypochlorite with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonylphosphatidylcholine on biophysical properties of bilayers and their effects on human erythrocytes. Using electrospray mass spectrometry we observed complete conversion of the lipids into chlorohydrins, which resulted in a decrease in the rotational correlation time and an increase in the order parameter of liposomes. Unilamellar chlorohydrin liposomes had a lower permeation coefficient for calcein than liposomes made of parent lipids. Flow cytometry demonstrated fast incorporation of uni and multilamellar chlorohydrin liposomes labeled with NBD-phosphatidylethanolamine into erythrocytes. This effect was accompanied by changes in erythrocyte shape (echinocyte formation) and aggregation. Similar but less pronounced effects were noticed for parent lipids only after longer incubation. Chlorohydrins showed also a stronger hemolytic action, proportional to the lipid:erythrocyte ratio. These results are important for understanding the effects of HOCl on mammalian cells, such as might occur in inflammatory pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A femtosecond pump-probe setup was used to measure the time resolved reflectivity of hydrogenated amorphous silicon containing crystalline silicon nanoparticles at eight different incidence angles. Results fitted with the Drude model found a scattering rate of G = 2-1+1.2×1015?s-1 at a corresponding carrier concentration of ~ 1020?cm-3. The observed scattering rate is attributed to enhanced carrier-carrier interaction in optically pumped nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxialSi/Si0.98B0.02/Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98B0.02 layer. For hydrogenated Si containing a 130nm thick Si0.98B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98B0.02 layer to 3nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.