915 resultados para high molecular-weight phlorotannins
Resumo:
The x- and y-type high molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe investigations on the HMW glutenin subunits from several Pseudoroegneria accessions. The electrophoretic mobilities of the HMW glutenin subunits from Pd. stipifolia, Pd tauri and Pd strigosa were much faster than those of orthologous wheat subunits, indicating that their protein size may be smaller than that of wheat subunits. The coding sequence of the Glu-1St1 subunit (encoded by the Pseudoroegneria stipifolia accession PI325181) was isolated, and found to represent the native open reading frame (ORF) by in vitro expression. The deduced amino acid sequence of Glu-1St1 matched with that determined from the native subunit by mass spectrometric analysis. The domain organization in Glu-1St1 showed high similarity with that of typical HMW glutenin subunits. However, Glu-1St1 exhibited several distinct characteristics. First, the length of its repetitive domain was substantially smaller than that of conventional subunits, which explains its much faster electrophoretic mobility in SDS-PAGE. Second, although the N-terminal domain of Glu-1St1 resembled that of y-type subunit, its C-terminal domain was more similar to that of x-type subunit. Third, the N- and C-terminat domains of Glu-1St1 shared conserved features with those of barley D-hordein, but the repeat motifs and the organization of its repetitive domain were more similar to those of HMW glutenin subunits than to D-hordein. We conclude that Glu-1St1 is a novel variant of HMW glutenin subunits. The analysis of Glu-1St1 may provide new insight into the evolution of HMW glutenin subunits in Triticeae species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A detailed series of simulation chamber experiments has been performed on the atmospheric degradation pathways of the primary air pollutant naphthalene and two of its photooxidation products, phthaldialdehyde and 1-nitronaphthalene. The measured yields of secondary organic aerosol (SOA) arising from the photooxidation of naphthalene varied from 6-20%, depending on the concentrations of naphthalene and nitrogen oxides as well as relative humidity. A range of carbonyls, nitro-compounds, phenols and carboxylic acids were identified among the gas- and particle-phase products. On-line analysis of the chemical composition of naphthalene SOA was performed using aerosol time-of-flight mass spectrometry (ATOFMS) for the first time. The results indicate that enhanced formation of carboxylic acids may contribute to the observed increase in SOA yields at higher relative humidity. The photolysis of phthaldialdehyde and 1-nitronaphthalene was investigated using natural light at the European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficients were measured directly and used to confirm that photolysis is the major atmospheric loss process for these compounds. For phthaldialdehyde, the main gas-phase products were phthalide and phthalic anhydride. SOA yields in the range 2-11% were observed, with phthalic acid and dihydroxyphthalic acid identified among the particle phase products. The photolysis of 1-nitronaphthalene yielded nitric oxide and a naphthoxy radical which reacted to form several products. SOA yields in the range 57-71% were observed, with 1,4-naphthoquinone, 1-naphthol and 1,4-naphthalenediol identified in the particle phase. On-line analysis of the SOA generated in an indoor chamber using ATOFMS provided evidence for the formation of high-molecular-weight products. Further investigations revealed that these products are oxygenated polycyclic compounds most likely produced from the dimerization of naphthoxy radicals. These results of this work indicate that naphthalene is a potentially large source of SOA in urban areas and should be included in atmospheric models. The kinetic and mechanistic information could be combined with existing literature data to produce an overall degradation mechanism for naphthalene suitable for inclusion in photochemical models that are used to predict the effect of emissions on air quality.
Resumo:
This thesis is presented in two parts. Data for this research is from the Cork BASELINE (Babies after SCOPE, Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n = 2137). In this prospective birth cohort study, pediatric follow-up with in-person appointments were repeated from the time of birth through to 2, 6 and 12 months, and at 2 years. Body composition was measured by air displacement plethysmography at birth and at 2 months using the PEA POD Infant Body Composition Tracking System. This thesis provides the first extensive report on the study’s 2 year assessment. In part one, the aims were to investigate potential early-life risk factors for childhood overweight and obesity, including rapid growth and body composition in infancy and umbilical cord concentrations of leptin and high molecular weight (HMW) adiponectin. This research is the first to describe rapid growth in early infancy in terms of changes in direct measures of body composition. These are also the first data to examine associations between umbilical cord leptin and HMW adiponectin concentrations and changes in fat and lean mass in early infancy. These data provide additional insight into characterising the growth trajectory in infancy and into the role of perinatal factors in determining infant growth and subsequent overweight/obesity risk. In part two of this thesis, the aims were to quantify vitamin D intake and status at 2 years and to investigate whether 25-hydroxyvitamin D [25(OH)D] concentrations in early pregnancy and in umbilical cord blood are associated with infant growth and body composition. There was a low prevalence of vitamin D deficiency among Irish 2 year olds (n = 742) despite a high prevalence of inadequate intakes and high latitude (51°N). Maternal 25(OH)D concentrations at 15 weeks gestation and cord 25(OH)D concentrations at delivery were not associated with infant growth or adiposity.
Resumo:
Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.
Resumo:
The Haemophilus influenzae HMW1 adhesin is a high-molecular weight protein that is secreted by the bacterial two-partner secretion pathway and mediates adherence to respiratory epithelium, an essential early step in the pathogenesis of H. influenzae disease. In recent work, we discovered that HMW1 is a glycoprotein and undergoes N-linked glycosylation at multiple asparagine residues with simple hexose units rather than N-acetylated hexose units, revealing an unusual N-glycosidic linkage and suggesting a new glycosyltransferase activity. Glycosylation protects HMW1 against premature degradation during the process of secretion and facilitates HMW1 tethering to the bacterial surface, a prerequisite for HMW1-mediated adherence. In the current study, we establish that the enzyme responsible for glycosylation of HMW1 is a protein called HMW1C, which is encoded by the hmw1 gene cluster and shares homology with a group of bacterial proteins that are generally associated with two-partner secretion systems. In addition, we demonstrate that HMW1C is capable of transferring glucose and galactose to HMW1 and is also able to generate hexose-hexose bonds. Our results define a new family of bacterial glycosyltransferases.
Resumo:
Previous work has shown that thrombin activatable fibrinolysis inhibitor (TAFI) was unable to prolong lysis of purified clots in the presence of Lys-plasminogen (Lys-Pg), indicating a possible mechanism for fibrinolysis to circumvent prolongation mediated by activated TAFI (TAFIa). Therefore, the effects of TAFIa on Lys-Pg activation and Lys-plasmin (Lys-Pn) inhibition by antiplasmin (AP) were quantitatively investigated using a fluorescently labeled recombinant Pg mutant which does not produce active Pn. High molecular weight fibrin degradation products (HMW-FDPs), a soluble fibrin surrogate that models Pn modified fibrin, treated with TAFIa decreased the catalytic efficiency (kcat/Km) of 5IAF-Glu-Pg cleavage by 417-fold and of 5IAF-Lys-Pg cleavage by 55-fold. A previously devised intact clot system was used to measure the apparent second order rate constant (k2) for Pn inhibition by AP over time. While TAFIa was able to abolish the protection associated with Pn modified fibrin in clots formed with Glu-Pg, it was not able to abolish the protection in clots formed with Lys-Pg. However, TAFIa was still able to prolong the lysis of clots formed with Lys-Pg. TAFIa prolongs clot lysis by removing the positive feedback loop for Pn generation. The effect of TAFIa modification of the HMW-FDPs on the rate of tissue type plasminogen activator (tPA) inhibition by plasminogen activator inhibitor type 1 (PAI-1) was investigated using a previously devised end point assay. HMW-FDPs decreased the k2 for tPA inhibition rate by 3-fold. Thus, HMW-FDPs protect tPA from PAI-1. TAFIa treatment of the HMW-FDPs resulted in no change in protection. Vitronectin also did not appreciably affect tPA inhibition by PAI-1. Pg, in conjunction with HMW-FDPs, decreased the k2 for tPA inhibition by 30-fold. Hence, Pg, when bound to HMW-FDPs, protects tPA by an additional 10-fold. TAFIa treatment of the HMW-FDPs completely removed this additional protection provided by Pg. In conclusion, an additional mechanism was identified whereby TAFIa can prolong clot lysis by increasing the rate of tPA inhibition by PAI-1 by eliminating the protective effects of Pn-modified fibrin and Pg. Because TAFIa can suppress Lys-Pg activation but cannot attenuate Lys-Pn inhibition by AP, the Glu- to Lys-Pg/Pn conversion is able to act as a fibrinolytic switch to ultimately lyse the clot.
Resumo:
Oviductin is an oviduct-specific and high-molecular-weight glycoprotein that has been suggested to play important roles in the early events of reproduction. The present study was undertaken to localize the oviductin binding sites in the uterine epithelial cells of the golden hamster (Mesocricetus auratus) both in situ and in vitro, and to detect a hamster oviductin homologue in the female rat reproductive tract. Immunohistochemical localization of oviductin in the hamster uterus revealed certain uterine epithelial cells reactive to the monoclonal anti-hamster oviductin antibody. In order to study the interaction between hamster oviductin and the endometrium in vitro, a method for culturing primary hamster uterine epithelial cells has been established and optimized. Study with confocal microscopy of the cell culture system showed a labeling pattern similar to what was observed using immunohistochemistry. Pre-embedding immunolabeling of cultured uterine epithelial cells also showed gold particles associated with the plasma membrane and microvilli. These results demonstrated that hamster oviductin can bind to the plasma membrane of certain hamster uterine epithelial cells, suggesting the presence of a putative oviductin receptor on the uterine epithelial cell surface. In the second part of the present study, using the monoclonal anti-hamster oviductin antibody that cross-reacts with the rat tissue, we have been able to detect an oviduct-specific glycoprotein, with a molecular weight of 180~300kDa, in the female rat reproductive tract. Immunohistochemical labeling of the female rat reproductive tract revealed a strong immunolabeling in the non-ciliated oviductal epithelial cells and a faint immunoreaction on the cell surface of some uterine epithelial cells. Ultrastructurally, immunogold labeling was restricted to the secretory granules, Golgi apparatus, and microvilli of the non-ciliated secretory cells of the oviduct. In the uterus, immunogold labeling was observed on the cell surface of some uterine epithelial cells. Furthermore, electron micrographs of ovulated oocytes showed an intense immunolabeling for rat oviductin within the perivitelline space surrounding the ovulated oocytes. The findings of the present study demonstrated that oviductin is present in the rat oviduct and uterus, and it appears that, in the rat, oviductin is secreted by the non-ciliated secretory cells of the oviduct.
Resumo:
The ageing behaviour of ultra-high molecular weight polyethylene (UHMWPE) has been studied following gamma irradiation (25 or 40 kGy) in air. Accelerated ageing procedures used elevated temperature (70°C) and/or pressurised oxygen (5 bar). Shelf-aged UHMWPE was also studied. The variation in surface density and mechanical properties were determined following the various sterilisation and ageing treatments. Microabrasive wear testing was also performed. Wear rates were found to correlate well with stress at break for sterilised and aged UHMWPE but not with elongation to failure. It is proposed that the wear mechanism is fracture dominated and occurs following some disentanglement of the polymer chains. Wear also depends upon embrittlement of the surface layer due to its processing and ageing. Elongation to failure in a tensile test is not a good measure of this embrittlement whereas the microabrasion test provides more surface sensitive information concerning this property.
Resumo:
This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.
Resumo:
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c(3) reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c(3) as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c(3) required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c(3). The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and-for sufficiently high values of c(3)-there is a reversible polymer-gel transformation at a density-dependent floor temperature. (C) 2002 American Institute of Physics.
Resumo:
The density of reactive carboxyl groups on the surface of poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) was modulated using a combination of high-molecular weight (MW) encapped and low MW non-encapped PLGA. Carboxyl groups were activated using carbodiimide chemistry and conjugated to bovine serum albumin and a model polyclonal antibody. Activation of carboxyl,groups in solution-phase PLGA prior to NP formation was compared with a postformation activation of peripheral carboxyl groups on intact NP. Activation before or after NP formation did not influence conjugation efficiency to NP prepared using 100% of the low-MW PLGA. The effect of steric stabilization using poly(vinyl alcohol) reduced conjugation of a polyclonal antibody from 62 mu g/(mg NP) to 32 mu g/(mg NP), but enhanced particulate stability. Increasing the amount of a high-MW PLGA also reduced Conjugation, with the activation post-formation still superior to the preformation approach. Drug release studies showed that high proportions of high-MW PLGA in the NP produced a longer sustained release profile of a model drug (celecoxib). It can be concluded that activating intact PLGA NP is superior to activating component parts prior to NP formation. Also, high MW PLGA could be used to prolong drug release, but at the expense of conjugation efficiency on to the NP surface. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 873-884, 2008
Resumo:
The properties of melanoidins prepared from glucose and glycine (GG) were investigated by a three step purification protocol consisting of dialysis, gel filtration at high ionic strength and ion metal affinity chromatography. The high molecular weight fraction obtained in the GG system is responsible for 80% of the total brown colour and its antioxidative ability was about 1/4 of that of Trolox measured by the inhibition of linoleic acid oxidation. GG melanoidins have good affinity towards Cu (II) (32% bound to the resin) while it is much lower towards Pb (II) (10%) and Fe (II) (5%). Capillary zone electrophoresis analysis suggests that GG melanoidins are positively charged, although no signal was observed analysing melanoidins by matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF/MS).
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFa and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NF?B was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature. © 2010 Bentham Science Publishers Ltd.
Resumo:
Aim: Flow-mediated dilation (FMD) is a surrogate marker of endothelial function, which has been proposed as a barometer of vascular health. Impaired microvascular response to reactive hyperaemia is thought to be the mechanism behind reduced shear stress and subsequently impaired FMD, which has been associated with cardiovascular events. This study aims to assess the effect of pioglitazone on the vasculature of patients with impaired glucose tolerance (IGT).
Materials and Methods: Forty IGT patients with no cardiovascular disease were compared with 24 healthy age- and sex-matched controls. Endothelial function was assessed using FMD of the brachial artery. Adiponectin (ADN) levels were measured and insulin sensitivity was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). A randomised double-blind placebo-controlled trial of the IGT subjects was then performed, with subjects receiving either pioglitazone 30 mg od or matched placebo for 12 weeks before the measurements were repeated.
Results: The IGT subjects had a significantly impaired FMD compared with the controls (p < 0.001). Diastolic shear stress (DSS) was also significantly reduced in IGT (p = 0.04). High molecular weight (HMW) ADN was significantly lower in the IGT group than in controls (p = 0.03). On analysis of the IGT group after 12 weeks treatment, FMD was significantly increased in the pioglitazone group compared with placebo (p = 0.03) as was endothelium-independent dilation (EID) (p = 0.03). A significant increase in total ADN (p < 0.001), HMW ADN (p < 0.001) and HMW/total ratio (p = 0.001) occurred in the pioglitazone group compared with placebo.
Conclusions: Pioglitazone improved endothelial function in IGT. Treatment with pioglitazone may reduce the risk of cardiovascular disease in this patient group.