932 resultados para growth level poverty
Resumo:
Plant species can condition the physico-chemical and biological properties of soil in ways that modify plant growth via plant–soil feedback (PSF). Plant growth can be positively affected, negatively affected or neutrally affected by soil conditioning by the same or other plant species. Soil conditioning by other plant species has particular relevance to ecological restoration of historic ecosystems because sites set aside for restoration are often conditioned by other, potentially non-native, plant species. We investigated changes in properties of jarrah forest soils after long-term (35 years) conditioning by pines (Pinus radiata), Sydney blue gums (Eucalyptus saligna), both non-native, plantation trees, and jarrah (Eucalyptus marginata; dominant native tree). Then, we tested the influence of the conditioned soils on the growth of jarrah seedlings. Blue gums and pines similarly conditioned the physico-chemical properties of soils, which differed from soil conditioning caused by jarrah. Especially important were the differences in conditioning of the properties C:N ratio, pH, and available K. The two eucalypt species similarly conditioned the biological properties of soil (i.e. community level physiological profile, numbers of fungal-feeding nematodes, omnivorous nematodes, and nematode channel ratio), and these differed from conditioning caused by pines. Species-specific conditioning of soil did not translate into differences in the amounts of biomass produced by jarrah seedlings and a neutral PSF was observed. In summary, we found that decades of soil conditioning by non-native plantation trees did not influence the growth of jarrah seedlings and will therefore not limit restoration of jarrah following the removal of the plantation trees.
Resumo:
Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.
Resumo:
The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.
Resumo:
The aim of this study was to describe the population structure, inbreeding and to quantify their effect for different weights, of Santa Ines sheep. For this reason, 6490 data of production and 17,097 animals in the pedigree data set were utilized to evaluate birth weight (BW), weight at 60 days (W60) and weight at 180 days (W180). The genetic structure analysis of the population was realized by the software ENDOG (v.4.6.), resulting in some level of inbreeding for 21.72% of the animals in the pedigree data, being 41.02% the maximum value, and average of 10.74% for the inbred individuals. The population average inbreeding was 2.33% and the average relatedness was 0.73%. The effective number of ancestors was 156 animals and the effective number of founders was 211 individuals. A significant depressive effect of the inbreeding can be verified for all traits. The monitored parameters related with the genetic variability on this population must be constant in order to prevent the decrease in the genetic progress. The utilization of a program for directed mating in the present flock is an appropriate alternative to keep the level of inbreeding under control. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)
Resumo:
Background and Objective: Platelets contain factors, including VEGF and endostatin, that can modulate the healing process. We evaluated the effects of severe thrombocytopenia on periodontal healing in rats and determined the contribution of VEGF and endostatin to the healing process. Material and Methods: Rats were distributed into three test groups and two control groups. Cotton ligatures were placed at the gingival margin level of the lower first molar in the test groups. Sham-operated rats and rats in one of the periodontitis groups were killed 15 days later. Rats in the remaining two periodontitis groups had the ligatures removed in order to study the spontaneous recovery from the periodontal disease 15 days later, and these rats were treated with rabbit antiplatelet serum, in order to induce thrombocytopenia, or normal rabbit serum. An additional group without ligatures received antiplatet serum in the same period. Results: After ligature removal, rats treated with normal rabbit serum showed reduced myeloperoxidase activity, decreased alveolar bone loss and increased numbers of blood vessels. Thrombocytopenia caused a delay in alveolar bone regeneration, a decrease in the number of vessels and a modest decrease in myeloperoxidase activity. In the rats with periodontitis, serum endostatin concentrations were slightly decreased and serum VEGF remained unchanged compared with sham-operated animals. After ligature removal, a significant VEGF increase and endostatin decrease were observed in the rats treated with normal rabbit serum. Thrombocytopenia led to a dramatic fall in both VEGF and endostatin concentrations. Conclusion: Thrombocytopenia leads to a delay of periodontal healing in the situation of experimental periodontitis, which might be mediated in part by a decrease in the serum concentration of VEGF and endostatin derived from the platelets. However, other factors derived from the platelets may also have contributed to a delay of periodontal healing in the rats with thrombocytopenia.
Resumo:
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Resumo:
The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The growth of molds on paper containing cellulose is a frequent occurrence when the level of relative air humidity is high or when books become wet due to water leaks in libraries. The aim of this study is to differentiate the bioreceptivity of different types of book paper for different fungi. Laboratory tests were performed with strains of Aspergillus niger, Cladosporium sp., Chaetomium globosum and Trichoderma harzianum isolated from books. Four paper types were evaluated: couche Men (offset), recycled and a reference paper containing only cellulose. The tests were carried out in chambers with relative air humidity of 95% and 100%. Mold growth was greatest in the tests at 100% relative humidity. Results of stereoscopic microscopy observation showed that Cladosporium sp. grew in 74% of these samples, A. niger in 75%, T. harzianum in 72% and C. globosum in 60%. In the chambers with 95% air humidity Cladosporium sp. grew in only 9% of the samples, A. niger in 1%, T harzianum in 3% and C globosum did not grow in any sample. The most bioreceptive paper was couche and the least receptive was recycled paper. The composition of the recycled paper, however, varies depending on the types of waste materials used to make it. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
The aim of this study was to investigate the mechanisms whereby low-intensity laser therapy may affect the severity of oral mucositis. A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil followed by surface irritation. Animals were randomly allocated into three groups and treated with a 35 mW laser, 100 mW laser, or no laser. Clinical severity of mucositis was assessed at four time-points by a blinded examiner. Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. This tissue was used for immunohistochemistry for cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and factor VIII (marker of microvessel density) and the resulting staining was quantified. Peak severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW laser and control groups. This reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a significantly lower level of COX-2 staining. The 100 mW laser did not have an effect on the severity of clinical mucositis, but was associated with a decrease in VEGF levels at the later time-points, as compared to the other groups. There was no clear relationship of VEGF levels or microvessel density to clinical mucositis severity. The tissue response to laser therapy appears to vary by dose. Low-intensity laser therapy appears to reduce the severity of mucositis, at least in part, by reducing COX-2 levels and associated inhibition of the inflammatory response.
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.
Resumo:
In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.
Resumo:
The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.