974 resultados para gravimetric inversion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of title compound, 2(C3H5N2^+^) C~6~H~8~O~8~^2-^ . 2H~2~O the galactarate dianions have crystallographic inversion symmetry and together with the water molecules of solvation form hydrogen-bonded sheet substructures which extend along the (110) planes in the unit cell. The imidazolium cations link these sheets peripherally down c through carboxyl O...H-N,N'---H...O(hydroxyl) bridges, giving a three-dimensional framework structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

William Gibson’s The Miracle Worker was staged at the Brisbane Powerhouse June 2009 by Crossbow Productions. In this adaption, people with hearing impairment were privileged through the use of shadow-signing, unscripted signing and the appropriation of signing as a theatrical language in itself. 250 people living with hearing impairment attended the production, 70 had never attended a theatrical event before. During the post-performance discussions hearing audience members expressed feelings of displacement through experiencing the culture of the deaf society and not grasping some of the ideas. This paper argues that this inversion enhanced meaning making for all and illustrates a way forward to encourage the signing of more theatrical events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title isonipecotamide salt 2C6H13N2O+.C12H8O6S22-,the asymmetric unit comprises one biphenyl-4,4'-disulfonate dianion which lies across a crystallographic inversion centre and another in a general position [dihedral angle between the two phenyl rings is 37.1(1)deg], together with three isonipecotamide cations. Two of these cations give a cyclic homomeric amide-amide dimer interaction [graph set R2/2(8)],the other giving a similar dimeric interaction but across an inversion centre, both dimers then forming lateral cyclic R2/4(8) pyrimidinium N-H...O interactions. These units are linked longitudinally to the sulfonate groups of the dianions through piperidinium N-H...O hydrogen bonds, giving a three-dimensional framework structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of two polymorphs of the anhydrous cocrystal adduct of bis(quinolinium-2-carboxylate) DL-malic acid, one triclinic the other monoclinic and disordered, have been determined at 200 K. Crystals of the triclinic polymorph 1 have space group P-1, with Z = 1 in a cell with dimensions a = 4.4854(4), b = 9.8914(7), c = 12.4670(8)Å, α = 79.671(5), β = 83.094(6), γ = 88.745(6)deg. Crystals of the monoclinic polymorph 2 have space group P21/c, with Z = 2 in a cell with dimensions a = 13.3640(4), b = 4.4237(12), c = 18.4182(5)Å, β = 100.782(3)deg. Both structures comprise centrosymmetric cyclic hydrogen-bonded quinolinic acid zwitterion dimers [graph set R2/2(10)] and 50% disordered malic acid molecules which lie across crystallographic inversion centres. However, the oxygen atoms of the malic acid carboxylic groups in 2 are 50% rotationally disordered whereas in 1 these are ordered. There are similar primary malic acid carboxyl O-H...quinaldic acid hydrogen-bonding chain interactions in each polymorph, extended into two-dimensional structures but in l this involves centrosymmetric cyclic head-to-head malic acid hydroxyl-carboxyl O-H...O interactions [graph set R2/2(10)] whereas in 2 the links are through single hydroxy-carboxyl hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bean golden mosaic geminivirus (BGMV) has a bipartite genome composed of two circular ssDNA components (DNA-A and DNA-B) and is transmitted by the whitefly, Bemisia tabaci. DNA-A encodes the viral replication proteins and the coat protein. To determine the role of BGMV coat protein systemic infection and whitefly transmission, two deletions and a restriction fragment inversion were introduced into the BGMV coat protein gene. All three coat protein mutants produced systemic infections when coinoculated with DNA-B onto Phaseolus vulgaris using electric discharge particle acceleration "particle gun." However, they were not sap transmissible and coat protein was not detected in mutant-infected plants. In addition, none of the mutants were transmitted by whiteflies. With all three mutants, ssDNA accumulation of DNA-A and DNA-B was reduced 25- to 50-fold and 3- to 10-fold, respectively, as compared to that of wild-type DNA. No effect on dsDNA-A accumulation was detected and there was 2- to 5-fold increase in dsDNA-B accumulation. Recombinants between the mutated DNA-A and DNA-B forms were identified when the inoculated coat protein mutant was linearized in the common region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laughter is a fundamental human phenomenon. Yet there is little educational research on the potential functions of laughter on the enacted (lived) curriculum. In this study, we identify the functions of laughter in a beginning science teacher’s classroom throughout her first year of teaching. Our study shows that laughter is more than a gratuitous phenomenon. It is the result of a collective interactive achievement of the classroom participants that offsets the seriousness of science as a discipline. Laughter, whereas it challenges the seriousness of science, also includes the dialectical inversion of the challenge: it simultaneously reinforces the idea of science as serious business.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O), the octahedral complex cations lie on crystallographic inversion centres and are hydrogen-bonded through the coordinated waters to the substituted benzenesulfonate monoanions and the water molecules of solvation, and together with a carboxylic acid O-H...O(sulfonate) association, give a three-dimensional structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.