989 resultados para grafene membrane separazione gas
Resumo:
The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.
Resumo:
The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.
Resumo:
Background Extracorporeal membrane oxygenation (ECMO) circuits have been shown to sequester circulating blood compounds such as drugs based on their physicochemical properties. This study aimed to describe the disposition of macro- and micronutrients in simulated ECMO circuits. Methods Following baseline sampling, known quantities of macro- and micronutrients were injected post oxygenator into ex vivo ECMO circuits primed with the fresh human whole blood and maintained under standard physiologic conditions. Serial blood samples were then obtained at 1, 30 and 60 min and at 6, 12 and 24 h after the addition of nutrients, to measure the concentrations of study compounds using validated assays. Results Twenty-one samples were tested for thirty-one nutrient compounds. There were significant reductions (p < 0.05) in circuit concentrations of some amino acids [alanine (10%), arginine (95%), cysteine (14%), glutamine (25%) and isoleucine (7%)], vitamins [A (42%) and E (6%)] and glucose (42%) over 24 h. Significant increases in circuit concentrations (p < 0.05) were observed over time for many amino acids, zinc and vitamin C. There were no significant reductions in total proteins, triglycerides, total cholesterol, selenium, copper, manganese and vitamin D concentrations within the ECMO circuit over a 24-h period. No clear correlation could be established between physicochemical properties and circuit behaviour of tested nutrients. Conclusions Significant alterations in macro- and micronutrient concentrations were observed in this single-dose ex vivo circuit study. Most significantly, there is potential for circuit loss of essential amino acid isoleucine and lipid soluble vitamins (A and E) in the ECMO circuit, and the mechanisms for this need further exploration. While the reductions in glucose concentrations and an increase in other macro- and micronutrient concentrations probably reflect cellular metabolism and breakdown, the decrement in arginine and glutamine concentrations may be attributed to their enzymatic conversion to ornithine and glutamate, respectively. While the results are generally reassuring from a macronutrient perspective, prospective studies in clinical subjects are indicated to further evaluate the influence of ECMO circuit on micronutrient concentrations and clinical outcomes.
Resumo:
Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
Artemisinin induced dormancy is a proposed mechanism for failures of mono-therapy and is linked with artemisinin resistance in Plasmodium falciparum. The biological characterization and dynamics of dormant parasites are not well understood. Here we report that following dihydroartemisinin (DHA) treatment in vitro, a small subset of morphologically dormant parasites was stained with rhodamine 123 (RH), a mitochondrial membrane potential (MMP) marker, and persisted to recovery. FACS sorted RH-positive parasites resumed growth at 10,000/well while RH-negative parasites failed to recover at 5 million/well. Furthermore, transcriptional activity for mitochondrial enzymes was only detected in RH-positive dormant parasites. Importantly, after treating dormant parasites with different concentrations of atovaquone, a mitochondrial inhibitor, the recovery of dormant parasites was delayed or stopped. This demonstrates that mitochondrial activity is critical for survival and regrowth of dormant parasites and that RH staining provides a means of identifying these parasites. These findings provide novel paths for studying and eradicating this dormant stage.
Resumo:
Macrophages have the capacity to rapidly secrete a wide range of inflammatory mediators that influence the development and extent of an inflammatory response. Newly synthesized and/or preformed stored cytokines and other inflammatory mediators are released upon stimulation, the timing, and volume of which is highly regulated. To finely tune this process, secretion is regulated at many levels; at the level of transcription and translation and post-translationally at the endoplasmic reticulum (ER), Golgi, and at or near the cell surface. Here, we discuss recent advances in deciphering these cytokine pathways in macrophages, focusing on recent discoveries regarding the cellular machinery and mechanisms implicated in the synthesis, trafficking, and secretion of cytokines. The specific roles of trafficking machinery including chaperones, GTPases, cytoskeletal proteins, and SNARE membrane fusion proteins will be discussed.
Resumo:
In response to current and increasing demand for assurance on greenhouse gas statements, the International Auditing and Assurance Standards Board (IAASB) released an exposure draft of a new assurance standard, ISAE 3410 'Assurance on a Greenhouse Gas Statement' (IFAC 2011), to provide comprehensive guidance on these types of greenhouse gas (GHG) assurance engagements. Internationally, approximately 50 percent of GHG statements are independently assured. The related assurance market is competitive, with the accounting profession and those outside the profession currently holding approximately equal shares. This paper highlights the characteristics of GHG assurance engagements that warrant multi-disciplinary teamwork, the unique and interdependent skill-sets that different practitioners bring to these engagements, and the market forces that create a demand for diverse providers.