876 resultados para gestural cues


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT This thesis is composed of two main parts. The first addressed the question of whether the auditory and somatosensory systems, like their visual counterpart, comprise parallel functional pathways for processing identity and spatial attributes (so-called `what' and `where' pathways, respectively). The second part examined the independence of control processes mediating task switching across 'what' and `where' pathways in the auditory and visual modalities. Concerning the first part, electrical neuroimaging of event-related potentials identified the spatio-temporal mechanisms subserving auditory (see Appendix, Study n°1) and vibrotactile (see Appendix, Study n°2) processing during two types of blocks of trials. `What' blocks varied stimuli in their frequency independently of their location.. `Where' blocks varied the same stimuli in their location independently of their frequency. Concerning the second part (see Appendix, Study n°3), a psychophysical task-switching paradigm was used to investigate the hypothesis that the efficacy of control processes depends on the extent of overlap between the neural circuitry mediating the different tasks at hand, such that more effective task preparation (and by extension smaller switch costs) is achieved when the anatomical/functional overlap of this circuitry is small. Performance costs associated with switching tasks and/or switching sensory modalities were measured. Tasks required the analysis of either the identity or spatial location of environmental objects (`what' and `where' tasks, respectively) that were presented either visually or acoustically on any given trial. Pretrial cues informed participants of the upcoming task, but not of the sensory modality. - In the audio-visual domain, the results showed that switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. In addition, switch costs between the senses were correlated only when the sensory modality of the task repeated across trials and not when it switched. The collective evidence not only supports the independence of control processes mediating task switching and modality switching, but also the hypothesis that switch costs reflect competitive interterence between neural circuits that in turn can be diminished when these neural circuits are distinct. - In the auditory and somatosensory domains, the findings show that a segregation of location vs. recognition information is observed across sensory systems and that these happen around 100ms for both sensory modalities. - Also, our results show that functionally specialized pathways for audition and somatosensation involve largely overlapping brain regions, i.e. posterior superior and middle temporal cortices and inferior parietal areas. Both these properties (synchrony of differential processing and overlapping brain regions) probably optimize the relationships across sensory modalities. - Therefore, these results may be indicative of a computationally advantageous organization for processing spatial anal identity information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'étude a pour objectif de mettre en évidence les effets d'une intervention précoce inspirée des thérapies en Guidance Interactive sur la qualité de l'attachement ainsi que sur la réactivité neuroendocrinienne de stress chez des grands prématurés âgés de 12 mois ainsi que chez leurs mères. La population étudiée comprend 48 grands prématurés (<33 semaines de gestation) et leurs mères. Un programme d'intervention précoce a été proposé aléatoirement à la moitié des dyades incluses dans l'étude. Des mesures de cortisol salivaire ont été effectuées à 12 mois lors d'un épisode de stress modéré (la Situation Étrange) tant chez la mère que chez l'enfant. Les mères ayant bénéficié de l'intervention précoce montrent des taux de cortisol plus élevés que celles n'ayant pas bénéficié de l'intervention. Les auteurs font l'hypothèse que ces mères ont pu développer leur sensibilité envers leur enfant et se montrent, par conséquent, plus concernées lors de l'épisode de stress modéré. The present project aims to assess the effects of an early intervention inspired from Interactive Guidance therapy, on later attachment quality and stress reactivity of prematurely born infants and their mothers. The studied population contends 48 preterm born infants (< 33 weeks og gestational age). Half of the dyads receive an intervention program aiming at promoting the parents' responsivity-sensitivity to infant's cues. Infant's and mother's stress reactivity (salivary cortisol) to mild stressors (Strange Situation) will be assessed at 12 months. Mothers with intervention program show higher cortisol levels than the others. The authors postulate that these mothers enhance their caregiving quality and, subsequently, are more prone to be sensitive to infant's cues and to be concerned during the mild stress episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mathematical representation of Brunswik s lens model has been usedextensively to study human judgment and provides a unique opportunity to conduct ameta-analysis of studies that covers roughly five decades. Specifically, we analyzestatistics of the lens model equation (Tucker, 1964) associated with 259 different taskenvironments obtained from 78 papers. In short, we find on average fairly high levelsof judgmental achievement and note that people can achieve similar levels of cognitiveperformance in both noisy and predictable environments. Although overall performancevaries little between laboratory and field studies, both differ in terms of components ofperformance and types of environments (numbers of cues and redundancy). An analysisof learning studies reveals that the most effective form of feedback is information aboutthe task. We also analyze empirically when bootstrapping is more likely to occur. Weconclude by indicating shortcomings of the kinds of studies conducted to date, limitationsin the lens model methodology, and possibilities for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glandular system is crucially involved in main aspects of ant social life. The function of glands has been primarily studied in the workers (the non-reproductive individuals in a colony). In contrast, little information is available on queens (the reproductive females in a colony) or males in spite of the obvious functional differences between these castes. Here we report a comparison of the general morphology of the mandibular, propharyngeal and postpharyngeal glands between the three castes of the black ant Lasius niger. The analysis clearly shows that all these cephalic glands differ in relative size between castes and suggests a link between gland structure and its behavioral role in queens, workers and males. In particular, males present a hypertrophied mandibular gland. This is consistent with the fact that these glands might be the source of the sex pheromone in this caste. By contrast, queens exhibited the most developed postpharyngeal glands. This is consistent with the production of particular cues by queens for workers to help them to distinguish between reproductive and non-reproductive females. Finally, the propharyngeal glands were most developed in the worker caste and of similar relative size in males and queens. Their function is still enigmatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important problem in descriptive and prescriptive research in decision making is to identify regions of rationality, i.e., the areas for which heuristics are and are not effective. To map the contours of such regions, we derive probabilities that heuristics identify the best of m alternatives (m > 2) characterized by k attributes or cues (k > 1). The heuristics include a single variable (lexicographic), variations of elimination-by-aspects, equal weighting, hybrids of the preceding, and models exploiting dominance. We use twenty simulated and four empirical datasets for illustration. We further provide an overview by regressing heuristic performance on factors characterizing environments. Overall, sensible heuristics generally yield similar choices in many environments. However, selection of the appropriate heuristic can be important in some regions (e.g., if there is low inter-correlation among attributes/cues). Since our work assumes a hit or miss decision criterion, we conclude by outlining extensions for exploring the effects of different loss functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similar to aboveground herbivores, root-feeding insects must locate and identify suitable resources. In the darkness of soil, they mainly rely on root chemical exudations and, therefore, have evolved specific behaviours. Because of their impact on crop yield, most of our knowledge in belowground chemical ecology is biased towards soil-dwelling insect pests. Yet the increasing literature on volatile-mediated interactions in the ground underpins the great importance of chemical signalling in this ecosystem and its potential in pest control. Here, we explore the ecology and physiology of these chemically based interactions. An evolutionary approach reveals interesting patterns in the response of insects to particular classes of volatile or water-soluble organic compounds commonly emitted by roots. Food web analyses reasonably support that volatiles are used as long-range cues whereas water-soluble molecules serve in host acceptance/rejection by the insect; however, data are still scarce. As a case study, the chemical ecology of Diabrotica virgifera virgifera is discussed and applications of belowground signalling in pest management are examined. Soil chemical ecology is an expanding field of research and will certainly be a hub of our understanding of soil communities and subsequently of the management of belowground ecosystem services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of decision rules depends on characteristics of bothrules and environments. A theoretical analysis of environments specifiesthe relative predictive accuracies of the lexicographic rule 'take-the-best'(TTB) and other simple strategies for binary choice. We identify threefactors: how the environment weights variables; characteristics of choicesets; and error. For cases involving from three to five binary cues, TTBis effective across many environments. However, hybrids of equal weights(EW) and TTB models are more effective as environments become morecompensatory. In the presence of error, TTB and similar models do not predictmuch better than a naïve model that exploits dominance. We emphasizepsychological implications and the need for more complete theories of theenvironment that include the role of error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The choice for suitable places for female mosquitoes to lay eggs is a key-factor for the survival of immature stages (eggs and larvae). This knowledge stands out in importance concerning the control of disease vectors. The selection of a place for oviposition requires a set of chemical, visual, olfactory and tactile cues that interact with the female before laying eggs, helping the localization of adequate sites for oviposition. The present paper presents a bibliographic revision on the main aspects of semiochemicals in regard to mosquitoes' oviposition, aiding the comprehension of their mechanisms and estimation of their potential as a tool for the monitoring and control of the Culicidae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.