989 resultados para germination percentage
Resumo:
The technique of Osmotic Conditioning, which consists of partial and controlled hydration of the seeds, has obtained success with various species of seeds, increasing the germinating span and tolerance to the adverse conditions of the environment, and has also reduced the time elapsed between sowing and the emergence of the plants. Associated to ideal storage conditions, the treatment has increased the performance of the seeds of tropical wood species. Aiming at studying the germinating environment and the effect of osmotic conditioning on the germination of seeds of the Australian Royal Palm tree, two experiments were performed. The first one evaluated the effect of disinfestation of the seeds of the Australian Royal Palm tree with NaClO. The treatments applied were: 0.5% sodium hypochlorite, exposure periods of 5, 15, 30, 45, 60, 90, 120 and 240 minutes, and the fungicide Captan, as control. The treatments with NaClO did not differ in relation to the final percentage of germination and to the germination speed index, and did not differ from the treatment control. The second test evaluated solutions with the following osmotic potentials: 0.0MPa (pure water), -0.4MPa, -0.6MPa and -0.8MPa, exposed for the periods of 10 and 20 days. The final percentage of germination did not differ among the treatments. The seeds hydrated in pure water for a period of 20 days showed a germination speed index significantly superior to the other treatments, and they did not show significant differences among themselves.
Resumo:
Excess salts in the root zone inhibit water uptake by plants, affect nutrient uptake and may result in toxicities due to individual salts in the soil solution. Excess exchangeable sodium in the soil may destroy the soil structure to a point where water penetration and root aeration become impossible. Sodium is also toxic to many plants. Beans (Phaseolus vulgaris L.) are consumed as protein source in northeastern Brazil, although little is known about common bean cultivar tolerance to salinity. The germination of bean cultivars under salt stress was studied. The cultivars 'Carioca' and 'Mulatinho' were submitted to germination test in a germinator at 25ºC, at the Seed Analysis Laboratory of the Brazilian Agricultural Research Corporation unit in the Semi- Arid region (Embrapa Semi Árido), Petrolina, Pernambuco State. These seeds were germinated on "germitest" papers imbibed in distilled water or in 10, 50, 100 e 200 mol.m-3sodium chloride (NaCl) solutions. At the first and second counts of the germination test, normal seedlings were counted, measured, weighed and dried, supplying data for vigor, total germination, fresh matter weight and dry matter weight and seedlings length. Total protein was quantified in cotyledons at 3, 6 and 9 days after sowing. The results indicated that the NaCl content influenced seed germination and concentrations above 50 mol.m-3 decreased germination and seedling growth.
Resumo:
The occurrence of green soybean seed due to forced maturation or premature plant death caused by drought or foliar and/or root diseases has been common in several Brazilian production areas. Physiological quality of seed lots with green seed may have their germination and vigor potentials affected and therefore discarded by the grain industry. The objective of this experiment was to determine the maximum tolerated level of green seed in soybean seed lots, which is information of major importance for seed producers when taking the decision whether to sell these lots. Soybean seed of the cultivars CD 206, produced in Ubirata, Parana, and FMT Tucunare, produced in Alto Garças, Mato Grosso, were used in the study. Green seed and yellow seed of both cultivars were mixed in the following proportions: 0%, 3%, 6%, 9%, 12%, 15%, 20%, 30%, 40%, 50%, 75% and 100%. Seed quality was evaluated by the germination, accelerated aging, tetrazolium and electrical conductivity tests. The contents of a, b and total chlorophyll in the seed were also determined. A complete randomized block design in a factorial scheme (two cultivars x 12 levels of green seed) was used. Seed quality was negatively affected and chlorophyll contents incremented with the increase in the percentage of green seed. Seed germination, viability and vigor, measured by the accelerated aging test, were not reduced with levels of up to 3% green seed, for both cultivars. Levels above 6% green seed significantly reduced the quality of the seed. The quality of seed lots with 9% or more green seed was significantly reduced to the point that their commercialization is not recommended.
Resumo:
Hot and dry weather conditions during soybean [Glycine max (L.) Merrill] seed maturation can cause forced maturation of the seed, resulting in the production of high levels of green seed, which may be detrimental to seed germination. These stressful conditions were imposed on soybean plants during seed maturation to investigate the production of green seeds and seed quality. Plants of the CD 206 cultivar were grown in a greenhouse until the R5.5 growing stage and then transferred to phytotrons at R6 and R7.2 for stress induction. Plants were subjected to two temperature regimes, high (28ºC to 36ºC) and normal (19ºC to 26ºC), and four soil water availability conditions, control (adequate water supply), 30% gravimetric moisture (GM), 20% GM and no water supply. Seed were harvested at R9. Green seed percentages and 100-seed weights from the lower, middle and upper thirds of each plant were determined. Seed quality was assessed by germination, tetrazolium (viability and vigor) and electrical conductivity tests. Occurrence of green seed varied from 9% to 86%, depending on the severity of the stresses imposed. High temperature, coupled with no water supply at R6, resulted in a pronounced occurrence of green seeds. There was no difference in the percentage of green seeds among the plant segments. Seed quality was negatively affected by the incidence of green seeds. A procedure for screening soybean genotypes in a phytotron for their tolerance and/or susceptibility to the production of green seeds was developed.
Resumo:
Plant breeding is generally done through sexual reproduction even when the species is propagated asexually for commercial exploitation, as for example, in sugarcane. Therefore, the development of procedures to evaluate sugarcane seed viability is important for plant breeding programs. The objective of this research was to develop a methodology for analyzing the viability of sugarcane seeds (Saccharum spp.). Three crosses were used, two biparental crosses and one polycross. For the germination test study, two substrates (paper and sand) and three constant incubation temperatures (25 ºC, 30 ºC and 35 ºC), in the presence of constant light and also an alternating temperatures (20-30 ºC), with 8 hours light (30 ºC) and 16 hours darkness (20 ºC), were studied. Seedlings were evaluated every five days. The results demonstrated that temperature affected sugarcane seed germination with the most favorable conditions being the alternating temperature (20-30 ºC) and the constant temperature of 30 ºC on a paper substrate.
Resumo:
Several mechanisms have been used to promote rapid germination of citrus seeds and uniform seedling emergence. We evaluated the effects of osmotic priming on the physiological performance of Rangpur lime seeds (Citrus limonia Osbeck). Seeds were treated with 30 g of Captan and 10 g of Tecto 600 in 20-litre batches and stored, without drying, at 10 ºC and 50% relative humidity for periods of 3, 6 and 9 months. After each period, seeds were primed at 25 ºC, in the light, by immersion in Poliethylenoglicol (PEG 6000), potassium nitrate (KNO3) and 70% PEG 6000 plus 30% KNO3, all at an osmotic potential of -1.1MPa, for priming periods of 3, 6, 9 and 12 days. Percentage germination, tray emergence and the emergence rate index (ERI) were evaluated. Priming in PEG 6000 solution, independent of priming period, or in KNO3 or PEG 6000 plus KNO3 for up to 9 days, were efficient at improving the physiological performance of seeds stored for up to 3 months. Osmotic priming appears to be a promising technique for improving the physiological quality of Rangpur lemon seeds.
Resumo:
The effect of chemical and biological treatments on castor bean emergence, seedling vigor, dry matter production, and also the control of microorganisms associated with seeds of the AL Guarany 2002 and Lyra cultivars, was evaluated. The products tested were carbendazim + thiram, carboxin + thiram and a product based on Trichoderma. Total seed and seedling emergence were evaluated at 27 days after sowing whereas dry matter production was verified for plants removed 45 days after sowing. The Guarany 2002 AL cultivar had a higher incidence of microorganisms than the Lyra cultivar. The chemical treatment was 100% effective in controlling fungi but the biological treatment did not reduce microorganism incidence on the seeds. Chemical treatment resulted in plants with more dry matter and the best results were for carbendazim + thiram and carboxin + thiram at doses of 60 g + 140 g and 50 g + 50 g/100 kg of seeds, respectively. The carbendazim + thiram mixture was the only treatment which was statistically higher for total emergence whereas the biological treatment increased emergence only for the Lyra cultivar, thus demonstrating its lower efficiency. The importance of fungicides to control pathogens associated with seeds was discussed.
Resumo:
The objective of the present study was to evaluate the efficiency of X-rays in identifying fissures in artificially dried rice seeds and the relationship between damage and seed performance in the germination test. Irrigated rice seeds of the IRGA 417 and IRGA 420 cultivars were harvested with 23.3 and 24.5% water content respectively and submitted to stationary drying treatments at 32, 38, 44 and 50 °C. X-rays were taken of subsamples of 100 seeds for each treatment, using an MX-20 X-ray equipment. The X-rayed seeds were classified from 1 to 3, where 1 corresponded to seeds without fissures, 2 to seeds with non-severe fissures and 3 to seeds with severe fissures. The same X-rayed seeds were planted and on the seventh day the seedlings (normal or abnormal) and dead seeds were photographed and evaluated to verify any relationship between the fissures and physiological potential. Higher drying temperature increased the percentage of fissures in the two cultivars, which can adversely affect their germination. Seeds with fissures can be identified using X-rays.
Resumo:
The objective of this study was to determine the responses of the wheat cultivars CD 108 and CD 111 for tolerance to organic acids. The effects of five concentrations of the three main acids formed in the soil were studied: acetic acid (0, 4, 8, 12 and 16 mM), propionic acid (0, 4, 8, 12 and 16 mM) and butyric acid (0, 2, 4, 8 and 12 mM). Tests included germination, shoot length, root length and dry weight of shoot and root. The variable root length is the most responsive variable for all the acids tested and the critical level of toxicity of acetic, propionic and butyric acids, which reduced root length by at least 50% was 9.0, 8.5 and 4.0 mM respectively. It was concluded that the presence of acetic, propionic and butyric acids in the germination substratum of wheat seeds of the cultivars CD 111 and CD 108 reduced seedling development, mainly by reducing the length of the radicles.
Resumo:
Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.
Resumo:
The objective of this study was to characterize morphologically the seed germination and floral biology of Jatropha curcas grown in Viçosa, Minas Gerais state. The floral biology study was made on fresh inflorescences of 20 plants. For the post-seminal development study, the seeds were submitted to laboratory and greenhouse germination test. J. curcas has flowers of both sexes within the same inflorescence, with each inflorescence having an average of 131 flowers, being 120 male and 10.5 female flowers. Low numbers of hermaphrodite flowers were also found, ranging from 0 to 6 flowers per inflorescence. The germination of J. curcas begins on the third day with radicle protrusion in the hilum region. The primary root is cylindrical, thick, glabrous and branches rapidly, with about 4-5 branches three days after protrusion, when the emergence of the secondary roots begins. Seed coat removal occurs around the 8th day, when the endosperm is almost totally degraded and offers no resistance to the cotyledons that expand between the 10th and 12th day. A normal seedling has a long greenish hypocotyl, two cotyledons, a robust primary root and several lateral roots. On the 12th day after sowing, the normal seedling is characterized as phanerocotylar and germination is epigeal.
Resumo:
Development of new technologies, aiming at increasing productivity in different crops, involves constant research on the effectiveness and application of these techniques in seed treatment. In this study, it was aimed at evaluating physiological potential of rice seeds treated with plant growth-promoting rhizobacteria (PGPR) (strains DFs185, DFs223, DFs306, DFs416), or with two dosages of the insecticide thiamethoxam. The variables assessed were: germination (G); first count of germination (FCG); cold test (CT); length of seedlings aerial parts (LAP), root system (LRS), and total length (TL); emergence speed index (ESI); emergence (E), at 14 days; and dry phytomass (DP). Treatments have had a positive effect on percentage of G, FCG and E. The strain DFs185 has promoted increase in percentage emergence, for five of the six lots assessed. The variables: LAP; LRS; TL; ESI; and DP have undergone low or none influence of treatments; and there has been no toxic effect of rhizobacteria or insecticide thiamethoxam. In the cold test, a negative effect of treatments has been detected. Seed treatment with rhizobacteria, as well as with thiamethoxam, improve quality of low quality rice seeds. The strain DFs185 is promising for treating rice seeds, once it stimulates seed germination and emergence.
Resumo:
Structural differences such as abnormalities, damage and free spaces in seeds may affect germination. The aim of this study was to study the relationship between eggplant seed morphology and seed germination. Ten seed lots of the eggplant cultivar Embu were evaluated by X-ray image analysis and the germination test. Seed image analysis was performed by Image Pro Plus® software and the whole seed area and free space between the embryo and endosperm were measured. The internal seed area filled by the embryo and endosperm was calculated from the difference between the whole seed and free space areas. Based on these results and visual seed analysis, seeds were classified into three categories and information on germination was obtained for each one. X-ray image analysis provides a perfect view of the internal seed parts and for seed morphology studies. An increase in seed area filled by the endosperm and embryo does not improve seed germination. Mechanical seed damage and deteriorated tissues can adversely affect seed germination.
Resumo:
réalisé en cotutelle avec la Faculté des Sciences de Tunis, Université Tunis El Manar.
Resumo:
Somatic embryos were induced from scutellar callus of immature zygotic embryos of T aestivum cv. Chinese Spring. Observations on precociously germinating somatic embryos revealed that: (i) In the initial stages the coleoptile is split, exposes the shoot apex and forms a green trichomatous leafy structure. In the germinating zygotic embryo, the coleoptile is tubular, (ii) Unlike what has been inferred earlier the leafy structure is the coleoptile and not the scutellum, (iii) Bipolarity of the embryoid is established later when root develops at the basal end.