647 resultados para gaseous
Resumo:
Solid state M-L, where M stands for bivalent transition metals (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) and L is mandelate, were synthesized. Simultaneous thermogravimetry and differential scanning calorimetry, elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results show that all the compounds were obtained in the anhydrous state and in agreement with the general formula ML2. The thermal decomposition of the compounds occurs in a single (Cu(II)), two (Ni(II)) three (Fe(II), Co(II)), four (Mn(II)) and five (Zn(II)) steps. The results also provided information concerning the ligand's denticity, thermal behaviour, final residues and identification of gaseous products evolved during the thermal decomposition of these compounds. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr 6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The equivalent uranium (eU) activity concentration was analysed in selected granite samples at several sites in Porto Alegre, Southern Brazil, to obtain information on the radon (222Rn) generation by the aquifer rock matrices. Radon analyses of ground water and soil samples were also performed. Several samples exhibited a dissolved 222Rn activity concentration exceeding the World Health Organization maximum limit of 100 Bq l-1. The dissolved radon content in ground waters from the Fractured Precambrian Aquifer System exhibited a direct significant correlation with the eU in the rock matrices, which is a typical result of water-rock interactions. Variation in the soil's porosity was confirmed as an important factor for 222Rn release, as expected, due to its gaseous nature. Thus, although the calcic-alkaline to alkaline Precambrian granitoid rocks of the study area are important reservoirs for underground resources, they can release high amounts of radon gas into the liquid phase. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
Solid-state compounds of yttrium and lanthanide chelates of ethylenediaminetetraacetic acid have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), theoretical and experimental infrared spectroscopy (FTIR), elemental analysis, complexometry and TG-DSC coupled to FTIR were used to characterize and to study the thermal decomposition of these compounds. The results provided information about the composition, dehydration, thermal stability, thermal decomposition and identification of gaseous products evolved during the thermal decomposition of these compounds. The theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the lanthanum and terbium metal ions. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.
Resumo:
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2 •-) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications. © © 2013 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE