495 resultados para galaxies: starburst


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Interplanetary scintillation observations of 48 of the 55 Augusto et al. (1998) flat spectrum radio sources were carried out at 111 MHz using the interplanetary scintillation method on the Large Phased Array (LPA) in Russia. Due to the large size of the LPA beam (1◦ × 0.5◦) a careful inspection of all possible confusion sources was made using extant large radio surveys: 37 of the 48 sources are not confused. We were able to estimate the scintillating flux densities of 13 sources, getting upper limits for the remaining 35. Gathering more or improving extant VLBI data on these sources might significantly improve our results. This proof-of-concept project tells us that compact (<1 ) flat spectrum radio sources show strong enough scintillations at 111 MHz to establish/constrain their spectra (low-frequency end). Key words. galaxies: general – galaxies: active – galaxies: quasars: general

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is nowadays a growing demand for located cooling and stabilization in optical and electronic devices, haul of portable systems of cooling that they allow a larger independence in several activities. The modules of thermoelectrical cooling are bombs of heat that use efect Peltier, that consists of the production of a temperature gradient when an electric current is applied to a thermoelectrical pair formed by two diferent drivers. That efect is part of a class of thermoelectrical efcts that it is typical of junctions among electric drivers. The modules are manufactured with semiconductors. The used is the bismuth telluride Bi2Te3, arranged in a periodic sequence. In this sense the idea appeared of doing an analysis of a system that obeys the sequence of Fibonacci. The sequence of Fibonacci has connections with the golden proportion, could be found in the reproductive study of the bees, in the behavior of the light and of the atoms, as well as in the growth of plants and in the study of galaxies, among many other applications. An apparatus unidimensional was set up with the objective of investigating the thermal behavior of a module that obeys it a rule of growth of the type Fibonacci. The results demonstrate that the modules that possess periodic arrangement are more eficient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium (Li) is a chemical element with atomic number 3 and it is among the lightest known elements in the universe. In general, the Lithium is found in the nature under the form of two stable isotopes, the 6Li and 7Li. This last one is the most dominant and responds for about 93% of the Li found in the Universe. Due to its fragileness this element is largely used in the astrophysics, especially in what refers to the understanding of the physical process that has occurred since the Big Bang going through the evolution of the galaxies and stars. In the primordial nucleosynthesis in the Big Bang moment (BBN), the theoretical calculation forecasts a Li production along with all the light elements such as Deuterium and Beryllium. To the Li the BNB theory reviews a primordial abundance of Log log ǫ(Li) =2.72 dex in a logarithmic scale related to the H. The abundance of Li found on the poor metal stars, or pop II stars type, is called as being the abundance of Li primordial and is the measure as being log ǫ(Li) =2.27 dex. In the ISM (Interstellar medium), that reflects the current value, the abundance of Lithium is log ǫ(Li) = 3.2 dex. This value has great importance for our comprehension on the chemical evolution of the galaxy. The process responsible for the increasing of the primordial value present in the Li is not clearly understood until nowadays. In fact there is a real contribution of Li from the giant stars of little mass and this contribution needs to be well streamed if we want to understand our galaxy. The main objection in this logical sequence is the appearing of some giant stars with little mass of G and K spectral types which atmosphere is highly enriched with Li. Such elevated values are exactly the opposite of what could happen with the typical abundance of giant low mass stars, where convective envelops pass through a mass deepening in which all the Li should be diluted and present abundances around log ǫ(Li) ∼1.4 dex following the model of stellar evolution. In the Literature three suggestions are found that try to reconcile the values of the abundance of Li theoretical and observed in these rich in Li giants, but any of them bring conclusive answers. In the present work, we propose a qualitative study of the evolutionary state of the rich in Li stars in the literature along with the recent discovery of the first star rich in Li observed by the Kepler Satellite. The main objective of this work is to promote a solid discussion about the evolutionary state based on the characteristic obtained from the seismic analysis of the object observed by Kepler. We used evolutionary traces and simulation done with the population synthesis code TRILEGAL intending to evaluate as precisely as possible the evolutionary state of the internal structure of these groups of stars. The results indicate a very short characteristic time when compared to the evolutionary scale related to the enrichment of these stars

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the way in which large-scale structures, like galaxies, form remains one of the most challenging problems in cosmology today. The standard theory for the origin of these structures is that they grew by gravitational instability from small, perhaps quantum generated, °uctuations in the density of dark matter, baryons and photons over an uniform primordial Universe. After the recombination, the baryons began to fall into the pre-existing gravitational potential wells of the dark matter. In this dissertation a study is initially made of the primordial recombination era, the epoch of the formation of the neutral hydrogen atoms. Besides, we analyzed the evolution of the density contrast (of baryonic and dark matter), in clouds of dark matter with masses among 104M¯ ¡ 1010M¯. In particular, we take into account the several physical mechanisms that act in the baryonic component, during and after the recombination era. The analysis of the formation of these primordial objects was made in the context of three models of dark energy as background: Quintessence, ¤CDM(Cosmological Constant plus Cold Dark Matter) and Phantom. We show that the dark matter is the fundamental agent for the formation of the structures observed today. The dark energy has great importance at that epoch of its formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppose we have identified three clusters of galaxies as being topological copies of the same object. How does this information constrain the possible models for the shape of our universe? It is shown here that, if our universe has flat spatial sections, these multiple images can be accommodated within any of the six classes of compact orientable three-dimensional flat space forms. Moreover, the discovery of two more triples of multiple images in the neighbourhood of the first one would allow the determination of the topology of the universe, and in most cases the determination of its size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a model for spiral galaxies based on a nonlinear realization of the Newtonian dynamics starting from the momentum and mass conservations in the phase space. The radial solution exhibits a rotation curve in qualitative accordance with the observational data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alignment of a pair of QSO triplets discovered by Arp and Hazard are tentatively explained by a combination of (I) the idea of quasar ejection by galaxies; (II) a construction by Narlikar suggesting a common origin for the six images; and (III) a nontrivial topology of cosmic space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the ever-increasing scale of structures discovered in the universe, we solve Einstein's equations numerically, under simplifying assumptions, to examine how this lack of uniformity affects the metric of Einstein-de Sitter cosmology. The results confirm the qualitative conclusion of Barrow, that a large density contrast is compatible with much smaller metric perturbations. The contribution of this peculiar gravity to the redshift might complicate studies of peculiar motions of galaxies, although it appears that the distortion is small for nearby clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a modified version of the cosmic crystallography method, especially useful for testing closed models of negative spatial curvature. The images of clusters of galaxies in simulated catalogs are 'pulled back' to the fundamental domain before the set of distances is calculated. © 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show the results and discussions of the study of a possible suppression of the extragalactic neutrino flux during its propagation due to a nonstandard interaction with a candidate field to dark matter. In particular, we show the study of neutrino interaction with an ultra-light scalar field. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a mechanism to reduce the ultra-high energy neutrino flux. We calculate both the cases of non-self-conjugate as well as self-conjugate ultra-light dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms, as absorption during propagation, for the reduction of the neutrino flux [1], © Published under licence by IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ubiquitous presence of dark matter in the Universe is today a central tenet in modern cosmology and astrophysics(1). Throughout the Universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood(2). Here we present an up-to-date compilation of Milky Way rotation curve measurements(3-13), and compare it with state-of-the-art baryonic mass distribution models(14-26). We show that current data strongly disfavour baryons as the sole contribution to the Galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy without making any assumptions about its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will help reveal the structure and evolution of the Galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.