438 resultados para fructose
Resumo:
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of β-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of β-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.
Resumo:
The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.
Resumo:
Plasmodium falciparum requires glucose as its energy source to multiply within erythrocytes but is separated from plasma by multiple membrane systems. The mechanism of delivery of substrates such as glucose to intraerythrocytic parasites is unclear. We have developed a system for robust functional expression in Xenopus oocytes of the P. falciparum asexual stage hexose permease, PfHT1, and have analyzed substrate specificities of PfHT1. We show that PfHT1 (a high-affinity glucose transporter, Km ≈ 1.0 mM) also transports fructose (Km ≈ 11.5 mM). Fructose can replace glucose as an energy source for intraerythrocytic parasites. PfHT1 binds fructose in a furanose conformation and glucose in a pyranose form. Fructose transport by PfHT1 is ablated by mutation of a single glutamine residue, Q169, which is predicted to lie within helix 5 of the hexose permeation pathway. Glucose transport in the Q169N mutant is preserved. Comparison in oocytes of transport properties of PfHT1 and human facilitative glucose transporter (GLUT)1, an archetypal mammalian hexose transporter, combined with studies on cultured P. falciparum, has clarified hexose permeation pathways in infected erythrocytes. Glucose and fructose enter erythrocytes through separate permeation pathways. Our studies suggest that both substrates enter parasites via PfHT1.
Resumo:
Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (Km) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1–1, 1–4, and 4–4). We also measured air temperature (Ta) and beetle body temperature (Tb) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in Km (1–1 > 1–4 > 4–4) and thermal stability (4–4 > 1–4 > 1–1) followed a pattern consistent with temperature adaptation. In nature, Tb was closely related to Ta. Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20°C day, 4°C night) and heat shock (4 h, 28–36°C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1–1 had higher Hsp70 levels than heterozygotes or a 4–4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.
Resumo:
We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pPfruB-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pPfruB-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to ≈1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.
Resumo:
We analyzed antioxidative defenses, photosynthesis, and pigments (especially xanthophyll-cycle components) in two wheat (Triticum durum Desf.) cultivars, Adamello and Ofanto, during dehydration and rehydration to determine the difference in their sensitivities to drought and to elucidate the role of different protective mechanisms against oxidative stress. Drought caused a more pronounced inhibition in growth and photosynthetic rates in the more sensitive cv Adamello compared with the relatively tolerant cv Ofanto. During dehydration the glutathione content decreased in both wheat cultivars, but only cv Adamello showed a significant increase in glutathione reductase and hydrogen peroxide-glutathione peroxidase activities. The activation states of two sulfhydryl-containing chloroplast enzymes, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase, were maintained at control levels during dehydration and rehydration in both cultivars. This indicates that the defense systems involved are efficient in the protection of sulfhydryl groups against oxidation. Drought did not cause significant effects on lipid peroxidation. Upon dehydration, a decline in chlorophyll a, lutein, neoxanthin, and β-carotene contents, and an increase in the pool of de-epoxidized xanthophyll-cycle components (i.e. zeaxanthin and antheraxanthin), were evident only in cv Adamello. Accordingly, after exposure to drought, cv Adamello showed a larger reduction in the actual photosystem II photochemical efficiency and a higher increase in nonradiative energy dissipation than cv Ofanto. Although differences in zeaxanthin content were not sufficient to explain the difference in drought tolerance between the two cultivars, zeaxanthin formation may be relevant in avoiding irreversible damage to photosystem II in the more sensitive cultivar.
Resumo:
To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules.
Resumo:
Mammalian hearing depends on the enhanced mechanical properties of the basilar membrane within the cochlear duct. The enhancement arises through the action of outer hair cells that act like force generators within the organ of Corti. Simple considerations show that underlying mechanism of somatic motility depends on local area changes within the lateral membrane of the cell. The molecular basis for this phenomenon is a dense array of particles that are inserted into the basolateral membrane and that are capable of sensing membrane potential field. We show here that outer hair cells selectively take up fructose, at rates high enough to suggest that a sugar transporter may be part of the motor complex. The relation of these findings to a recent candidate for the molecular motor is also discussed.
Resumo:
Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. We have tested whether hexose export is the normal route of carbon export from chloroplasts at night. We used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (Phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mm, whereas that in the chloroplasts was 5 mm, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. We conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.
Resumo:
Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-bisphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers. Just before the cut, when the canopy was relatively large, growth at elevated pCO2 and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO2 resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.
Resumo:
We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented.
Resumo:
We analyzed transgenic tobacco (Nicotiana tabacum L.) expressing Stpd1, a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple, under the control of a cauliflower mosaic virus 35S promoter. In 125 independent transformants variable amounts of sorbitol ranging from 0.2 to 130 μmol g−1 fresh weight were found. Plants that accumulated up to 2 to 3 μmol g−1 fresh weight sorbitol were phenotypically normal, with successively slower growth as sorbitol amounts increased. Plants accumulating sorbitol at 3 to 5 μmol g−1 fresh weight occasionally showed regions in which chlorophyll was partially lost, but at higher sorbitol amounts young leaves of all plants lost chlorophyll in irregular spots that developed into necrotic lesions. When sorbitol exceeded 15 to 20 μmol g−1 fresh weight, plants were infertile, and at even higher sorbitol concentrations the primary regenerants were incapable of forming roots in culture or soil. In mature plants sorbitol amounts varied with age, leaf position, and growth conditions. The appearance of lesions was correlated with high sorbitol, glucose, fructose, and starch, and low myo-inositol. Supplementing myo-inositol in seedlings and young plants prevented lesion formation. Hyperaccumulation of sorbitol, which interferes with inositol biosynthesis, seems to lead to osmotic imbalance, possibly acting as a signal affecting carbohydrate allocation and transport.
Resumo:
Maize (Zea mays L.) plants were grown to the nine-leaf stage. Despite a saturating N supply, the youngest mature leaves (seventh position on the stem) contained little NO3− reserve. Droughted plants (deprived of nutrient solution) showed changes in foliar enzyme activities, mRNA accumulation, photosynthesis, and carbohydrate and amino acid contents. Total leaf water potential and CO2 assimilation rates, measured 3 h into the photoperiod, decreased 3 d after the onset of drought. Starch, glucose, fructose, and amino acids, but not sucrose (Suc), accumulated in the leaves of droughted plants. Maximal extractable phosphoenolpyruvate carboxylase activities increased slightly during water deficit, whereas the sensitivity of this enzyme to the inhibitor malate decreased. Maximal extractable Suc phosphate synthase activities decreased as a result of water stress, and there was an increase in the sensitivity to the inhibitor orthophosphate. A correlation between maximal extractable foliar nitrate reductase (NR) activity and the rate of CO2 assimilation was observed. The NR activation state and maximal extractable NR activity declined rapidly in response to drought. Photosynthesis and NR activity recovered rapidly when nutrient solution was restored at this point. The decrease in maximal extractable NR activity was accompanied by a decrease in NR transcripts, whereas Suc phosphate synthase and phosphoenolpyruvate carboxylase mRNAs were much less affected. The coordination of N and C metabolism is retained during drought conditions via modulation of the activities of Suc phosphate synthase and NR commensurate with the prevailing rate of photosynthesis.
Resumo:
Two divergent genes encoding fructokinase, Frk1 and Frk2, have been previously shown to be expressed in tomato (Lycopersicon esculentum L.) and have now been further characterized with regard to their spatial expression and the enzymic properties of the encoded proteins. Frk1 and Frk2 mRNA levels were coordinately induced by exogenous sugar, indicating that both belong to the growing class of sugar-regulated genes. However, in situ hybridization indicated that Frk1 and Frk2 were expressed in a spatially distinct manner, with Frk2 mRNA primarily localized in cells of the fruit pericarp, which store starch, and Frk1 mRNA distributed ubiquitously in pericarp tissue. To evaluate the biochemical characteristics of the products of the Frk1 and Frk2 genes, each cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line defective in hexose phosphorylation and unable to grow on glucose or fructose (Fru). Both Frk1 and Frk2 proteins expressed in yeast conferred the ability to grow on Fru and exhibited fructokinase activity in vitro. Although both Frk1 and Frk2 both utilized Fru as a substrate, only Frk2 activity was inhibited at high Fru concentrations. These results indicate that Frk2 can be distinguished from Frk1 by its sensitivity to substrate inhibition and by its temporal and spatial pattern of expression, which suggests that it plays a primary role in plant cells specialized for starch storage.
Resumo:
Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.