919 resultados para forecast
Resumo:
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Resumo:
In this paper we investigate the ability of a number of different ordered probit models to predict ratings based on firm-specific data on business and financial risks. We investigate models based on momentum, drift and ageing and compare them against alternatives that take into account the initial rating of the firm and its previous actual rating. Using data on US bond issuing firms rated by Fitch over the years 2000 to 2007 we compare the performance of these models in predicting the rating in-sample and out-of-sample using root mean squared errors, Diebold-Mariano tests of forecast performance and contingency tables. We conclude that initial and previous states have a substantial influence on rating prediction.
Resumo:
Forecasts of differences in growth between countries serve an important role in the justification of governments’ fiscal policy stances, but are not tested for their accuracy as part of the current range of forecast evaluation methods. This paper examines forecasted and outturn growth differentials between countries to identify if there is usefulness in forecasts of “relative” growth. Using OECD forecasts and outturn values for GDP growth for (combinations of) the G7 countries between 1984 and 2010, the paper finds that the OECD’s success in predicting the relative growth of G7 countries during this period is good. For each two-country combination results indicate that relative growth forecasts are less useful for countries which have smaller outturn growth differentials.
Resumo:
In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding real-time and revised data on employment and industrial production in the US. We evaluate models using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that, especially for employment, there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor. Moreover, forecasts based on real-time data are generally comparable to forecasts based on revised data. JEL Classification: C22; C53; E32 Keywords: Credit spreads; Principal components; Forecasting; Real-time data.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.
Resumo:
We study the impact of anticipated fiscal policy changes in a Ramsey economy where agents form long-horizon expectations using adaptive learning. We extend the existing framework by introducing distortionary taxes as well as elastic labour supply, which makes agents. decisions non-predetermined but more realistic. We detect that the dynamic responses to anticipated tax changes under learning have oscillatory behaviour that can be interpreted as self-fulfilling waves of optimism and pessimism emerging from systematic forecast errors. Moreover, we demonstrate that these waves can have important implications for the welfare consequences of .scal reforms. (JEL: E32, E62, D84)
Resumo:
An important disconnect in the news driven view of the business cycle formalized by Beaudry and Portier (2004), is the lack of agreement between different—VAR and DSGE—methodologies over the empirical plausibility of this view. We argue that this disconnect can be largely resolved once we augment a standard DSGE model with a financial channel that provides amplification to news shocks. Both methodologies suggest news shocks to the future growth prospects of the economy to be significant drivers of U.S. business cycles in the post-Greenspan era (1990-2011), explaining as much as 50% of the forecast error variance in hours worked in cyclical frequencies
Resumo:
We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.
Resumo:
We study the asymmetric and dynamic dependence between financial assets and demonstrate, from the perspective of risk management, the economic significance of dynamic copula models. First, we construct stock and currency portfolios sorted on different characteristics (ex ante beta, coskewness, cokurtosis and order flows), and find substantial evidence of dynamic evolution between the high beta (respectively, coskewness, cokurtosis and order flow) portfolios and the low beta (coskewness, cokurtosis and order flow) portfolios. Second, using three different dependence measures, we show the presence of asymmetric dependence between these characteristic-sorted portfolios. Third, we use a dynamic copula framework based on Creal et al. (2013) and Patton (2012) to forecast the portfolio Value-at-Risk of long-short (high minus low) equity and FX portfolios. We use several widely used univariate and multivariate VaR models for the purpose of comparison. Backtesting our methodology, we find that the asymmetric dynamic copula models provide more accurate forecasts, in general, and, in particular, perform much better during the recent financial crises, indicating the economic significance of incorporating dynamic and asymmetric dependence in risk management.
Resumo:
One of the cornerstone of financial anomalies is that there exists money making opportunities. Shiller’s excess volatility theory is re-investigated from the perspective of a trading strategy where the present value is computed using a series of simple econometric models to forecast the present value. The results show that the excess volatility may not be exploited given the data available until time t. However, when learning is introduced empirically, the simple trading strategy may offer profits, but which are likely to disappear once transaction costs are considered.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
We re-examine the dynamics of returns and dividend growth within the present-value framework of stock prices. We find that the finite sample order of integration of returns is approximately equal to the order of integration of the first-differenced price-dividend ratio. As such, the traditional return forecasting regressions based on the price-dividend ratio are invalid. Moreover, the nonstationary long memory behaviour of the price-dividend ratio induces antipersistence in returns. This suggests that expected returns should be modelled as an AFIRMA process and we show this improves the forecast ability of the present-value model in-sample and out-of-sample.
Resumo:
One of the cornerstone of financial anomalies is that there exists money making opportunities. Shiller’s excess volatility theory is re-investigated from the perspective of a trading strategy where the present value is computed using a series of simple econometric models to forecast the present value. The results show that the excess volatility may not be exploited given the data available until time t. However, when learning is introduced empirically, the simple trading strategy may offer profits, but which are likely to disappear once transaction costs are considered.
Resumo:
A large bibliographic survey provided data on Trypanosoma cruzi serology covering the period l948-l984. Epidemiological-demographic methods provided an estimate of 11% for the prevalenceof positive serology in Brazil, by 1984. Significant temporal trends were observed for most of the Brazilian geographical regions as well as for Brazil, as a whole. The parabolic curve that fit best for the entire country, indicates that by 1991, the incidence of new positive serology would be close to zero. This conclusion needs further fine-adjustment, since the forecast point is somewhat distant from the measured period.
Resumo:
Traffic forecasts provide essential input for the appraisal of transport investment projects. However, according to recent empirical evidence, long-term predictions are subject to high levels of uncertainty. This paper quantifies uncertainty in traffic forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form of a confidence interval for the traffic forecast that includes both model uncertainty and input uncertainty. We apply a stochastic simulation process based on bootstrapping techniques. Furthermore, the paper proposes a new methodology to account for capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of adjustment is related to the ratio between the actual traffic flow and the maximum capacity of the motorway. This methodology is applied to a specific public policy that consists of suppressing the toll on a certain motorway section before the concession expires.