948 resultados para fluorescent PCR
Resumo:
The performance of the Xpert MRSA polymerase chain reaction (PCR) assay on pooled nose, groin, and throat swabs (three nylon flocked eSwabs into one tube) was compared to culture by analyzing 5,546 samples. The sensitivity [0.78, 95 % confidence interval (CI) 0.73-0.82] and specificity (0.99, 95 % CI 0.98-0.99) were similar to the results from published studies on separated nose or other specimens. Thus, the performance of the Xpert MRSA assay was not affected by pooling the three specimens into one assay, allowing a higher detection rate without increasing laboratory costs, as compared to nose samples alone.
Resumo:
Keskushermosto- ja neonataali-infektiot ovat herpes simplex -virusten aiheuttamista taudeista vakavimpia. Niihin on olemassa lääkitys, joka on tehokkain, kun se aloitetaan aivan sairauden alkuvaiheessa. Näiden infektioiden diagnostiikassa PCR-menetelmä on herkin. Tämä menetelmä on kuitenkin työläs ja aikaa vievä, joten uudet nopeammat menetelmät ovat tervetulleita. Opinnäytetyö tehtiin HUSLABin virologian osastolle. Työssä testattiin QIAGENIN artus®HSV-1/2 LC PCR-reagenssipakkausta, joka on tehty käytettäväksi Roche diagnosticsin reaaliaikaisella PCR-laitteella LightCyclerillä. Lisäksi työssä testattiin automaattista bioMérieuxin NucliSens easyMAG- nukleiinihappoeristyslaitetta. Referenssinä käytettiin HUSLABin virologian osastolla testaushetkellä käytössä olevia menetelmiä. Reaaliaikaisen PCR-menetelmän herkkyyttä testattiin positiivisilla HSV-1 ja HSV-2 kontrollilaimennussarjoilla. Menetelmän oikeellisuutta testattiin määrittämällä laaduntarkkailu- ja potilasnäytteitä, jotka olivat likvoria. Tuloksia verrattiin QCMD:n antamiin ja perinteisellä ”in house”- PCR-menetelmällä saatuihin referenssituloksiin. Spesifisyyttä testattiin muiden ihmisten herpesvirusten positiivisilla kontrolleilla. Automaattisen nukleiinihappoeristysmenetelmän toimivuutta testattiin HSV-positiivisilla ja -negatiivisilla likvornäytteillä, jotka oli aikaisemmin eristetty fenoli-kloroformiuutolla. Tulokset QIAGENIN artus®HSV-1/2 LC PCR-reagenssipakkauksesta olivat hyviä. Kont-rollilaimennussarjan määrityksessä reaaliaikainen PCR-menetelmä osoittautui perinteistä ”in house”- PCR-menetelmää herkemmäksi. Potilasnäytteiden määrityksessä tulokset olivat yhtenevät. EasyMAG- nukleiinihappoeristysmenetelmällä eristettyjen potilasnäytteiden määrityksistä saadut tulokset olivat myös hyviä. Kun tuloksia verrattiin fenoli-kloroformiuutolla saatuihin tuloksiin, olivat tulokset yhtä näytettä lukuun ottamatta yhtenevät. Molemmat testattavat menetelmät ovat nopeita ja virhelähteiden mahdollisuus on vähäisempi kuin perinteisessä ”in house”-PCR menetelmässä ja fenoli-kloroformiuutolla nukleiinihappoa eristettäessä. Tutkimusten tulokset osoittivat molempien menetelmien soveltuvan hyvin HSV:n eristykseen ja määritykseen likvornäytteistä.
Resumo:
Biomphalaria glabrata, molusco de água doce, desempenha um importante papel em Parasitologia Médica, por ser o hospedeiro intermediário de Schistosoma mansoni, tremátode digenético responsável pela schistosomose intestinal. A detecção de moluscos infectados pelo Schistosoma mansoni tem uma grande importância em Saúde pública, porque identifica focos de transmissão da schistosomose. As limitações dos métodos clássicos para o diagnóstico de infecções pré patentes fazem com que os métodos de biologia moleculares sejam vistos como possíveis alternativas através da detecção de ADN do S. mansoni em moluscos hospedeiros. A detecção de sequências específicas de ADN por reacção de polimerase em cadeia (PCR) tem-se verificado ser de extrema importância para a análise genética e diagnóstico de várias doenças infecciosas. Neste estudo foi aplicada a técnica de Nested-PCR, com o objectivo de identificar, no período pré-patente, S. mansoni em moluscos expostos a 1, 5 e 10 miracídios em diferentes períodos de tempo. Foram utilizados moluscos das estirpes albina e selvagem de B. glabrata. Para a realização das técnicas de PCR e de Nested–PCR (NPCR) foram utilizados dois pares de oligonucleótidos desenhados especificamente para detectar o ADN de S. mansoni . Verificou-se amplificação do fragmento de ADN do parasita em 80% das amostras analisadas, independentemente da dose de miracídios e do período de exposição. O método utilizado é altamente sensível, mostrando ser uma ferramenta útil na detecção de hospedeiros intermediários de S. mansoni, consequentemente na identificação de focos de schistosomose intestinal.
Resumo:
Biomphalaria glabrata, molusco de água doce, desempenha um importante papel em Parasitologia Médica, por ser o hospedeiro intermediário de Schistosoma mansoni, tremátode digenético responsável pela schistosomose intestinal. A detecção de moluscos infectados pelo Schistosoma mansoni tem uma grande importância em Saúde pública, porque identifica focos de transmissão da schistosomose. As limitações dos métodos clássicos para o diagnóstico de infecções pré patentes fazem com que os métodos de biologia moleculares sejam vistos como possíveis alternativas através da detecção de ADN do S. mansoni em moluscos hospedeiros. A detecção de sequências específicas de ADN por reacção de polimerase em cadeia (PCR) tem-se verificado ser de extrema importância para a análise genética e diagnóstico de várias doenças infecciosas. Neste estudo foi aplicada a técnica de Nested-PCR, com o objectivo de identificar, no período pré-patente, S. mansoni em moluscos expostos a 1, 5 e 10 miracídios em diferentes períodos de tempo. Foram utilizados moluscos das estirpes albina e selvagem de B. glabrata. Para a realização das técnicas de PCR e de Nested–PCR (NPCR) foram utilizados dois pares de oligonucleótidos desenhados especificamente para detectar o ADN de S. mansoni . Verificou-se amplificação do fragmento de ADN do parasita em 80% das amostras analisadas, independentemente da dose de miracídios e do período de exposição. O método utilizado é altamente sensível, mostrando ser uma ferramenta útil na detecção de hospedeiros intermediários de S. mansoni, consequentemente na identificação de focos de schistosomose intestinal.
Resumo:
STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Resumo:
BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
The aim of the present study was to examine genetic variability in populations of An. cruzii by employing PCR-RAPD and PCR-RFLP markers. All analyses were carried out using individuals of the F1 generation of wild caught females obtained in Santa Catarina State (Florianópolis and São Francisco do Sul), Paraná State (Morretes, Paranaguá and Guaratuba) and São Paulo State (Cananéia). In the PCR-RAPD experiments, seven primers were used for comparisons within and among populations. The restriction profile of the ITS2 including a fragment of both 5.8S and 28S regions of the rDNA was obtained with the enzymes BstUI, HaeIII, TaqI, HhaI, Sau96I, HinfI, HincII and NruI. The PCR-RAPD method detected a large number of polymorphic bands. Genetic distance among populations of An. cruzii varied from 0,0214 to 0,0673, suggesting that all individuals used in the analyses belong to a single species. The number of migrants per generation (Nm) was 4.3, showing the existence of gene flow among populations. The restriction profile of the ITS2, 5.8S and 28S gene regions was similar in all An. cruzii samples, whereas the results obtained by using HhaI and NruI are indicative that the individuals analyzed have nucleotide sequences distinct from those of An. cruzii samples from Peruíbe and Juquiazinho deposited in GenBank.
Resumo:
The aim of this study was to assess whether Neisseria meningitidis, Listeria monocytogenes, Streptococcus pneumoniae and Haemophilus influenzae can be identified using the polymerase chain reaction technique in the cerebrospinal fluid of severely decomposed bodies with known, noninfectious causes of death or whether postmortem changes can lead to false positive results and thus erroneous diagnostic information. Biochemical investigations, postmortem bacteriology and real-time polymerase chain reaction analysis in cerebrospinal fluid were performed in a series of medico-legal autopsies that included noninfectious causes of death with decomposition, bacterial meningitis without decomposition, bacterial meningitis with decomposition, low respiratory tract infections with decomposition and abdominal infections with decomposition. In noninfectious causes of death with decomposition, postmortem investigations failed to reveal results consistent with generalized inflammation or bacterial infections at the time of death. Real-time polymerase chain reaction analysis in cerebrospinal fluid did not identify the studied bacteria in any of these cases. The results of this study highlight the usefulness of molecular approaches in bacteriology as well as the use of alternative biological samples in postmortem biochemistry in order to obtain suitable information even in corpses with severe decompositional changes.
Resumo:
A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.
Resumo:
A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade, PCR assays have been developed for the direct detection of fungi in nail samples. In this study, we describe a PCR-terminal restriction fragment length polymorphism (TRFLP) assay to directly and routinely identify the infecting fungi in nails. Fungal DNA was easily extracted using a commercial kit after dissolving nail fragments in an Na(2)S solution. Trichophyton spp., as well as 12 NDF, could be unambiguously identified by the specific restriction fragment size of 5'-end-labeled amplified 28S DNA. This assay enables the distinction of different fungal infectious agents and their identification in mixed infections. Infectious agents could be identified in 74% (162/219) of cases in which the culture results were negative. The PCR-TRFLP assay described here is simple and reliable. Furthermore, it has the possibility to be automated and thus routinely applied to the rapid diagnosis of a large number of clinical specimens in dermatology laboratories.
Resumo:
To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and immunofluorescence showed that Cx43 is the predominant connexin expressed by smooth muscle cells (SMC), whereas Cx26 is abundantly expressed only in the latter cell type. To evaluate whether these connexins are affected by changes in transmural urine pressure, we used a rat model of bladder outlet obstruction, in which a ligature is placed around the urethra. Under conditions of increased fluid pressure due to urine retention, we observed that the expression of both Cx43 and Cx26 increased at both transcript and protein levels, reaching a maximum 7-9 h after the ligature. Further analysis revealed that these changes were accounted for by a fourfold increase in Cx43 mRNA of SMC but not urothelial cell and by a fivefold increase in Cx26 mRNA of urothelium. Scrape-loading of propidium iodide showed that the latter change was paralleled by a twofold increase in coupling between urothelial cells. The data show that Cx43 and Cx26 are differentially regulated during bladder outlet obstruction and contribute to the response of the bladder wall to increased voiding pressure, possibly to control its elasticity.
Resumo:
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
Pyochelin (Pch) and enantio-pyochelin (EPch) are enantiomer siderophores that are produced by Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, under iron limitation. Pch promotes growth of P. aeruginosa when iron is scarce, and EPch carries out the same biological function in P. fluorescens. However, the two siderophores are unable to promote growth in the heterologous species, indicating that siderophore-mediated iron uptake is highly stereospecific. In the present work, using binding and iron uptake assays, we found that FptA, the Fe-Pch outer membrane transporter of P. aeruginosa, recognized (K(d) = 2.5 +/- 1.1 nm) and transported Fe-Pch but did not interact with Fe-EPch. Likewise, FetA, the Fe-EPch receptor of P. fluorescens, was specific for Fe-EPch (K(d) = 3.7 +/- 2.1 nm) but did not bind and transport Fe-Pch. Growth promotion experiments performed under iron-limiting conditions confirmed that FptA and FetA are highly specific for Pch and EPch, respectively. When fptA and fetA along with adjacent transport genes involved in siderophore uptake were swapped between the two bacterial species, P. aeruginosa became able to utilize Fe-EPch as an iron source, and P. fluorescens was able to grow with Fe-Pch. Docking experiments using the FptA structure and binding assays showed that the stereospecificity of Pch recognition by FptA was mostly due to the configuration of the siderophore chiral centers C4'' and C2'' and was only weakly dependent on the configuration of the C4' carbon atom. Together, these findings increase our understanding of the stereospecific interaction between Pch and its outer membrane receptor FptA.