814 resultados para finite games
Resumo:
[eng] A multi-sided Böhm-Bawerk assignment game (Tejada, to appear) is a model for a multilateral market with a finite number of perfectly complementary indivisible commodities owned by different sellers, and inflexible demand and support functions. We show that for each such market game there is a unique vector of competitive prices for the commodities that is vertical syndication-proof, in the sense that, at those prices, syndication of sellers each owning a different commodity is neither beneficial nor detrimental for the buyers. Since, moreover, the benefits obtained by the agents at those prices correspond to the nucleolus of the market game, we provide a syndication-based foundation for the nucleolus as an appropriate solution concept for market games. For different solution concepts a syndicate can be disadvantageous and there is no escape to Aumman’s paradox (Aumann, 1973). We further show that vertical syndicationproofness and horizontal syndication-proofness – in which sellers of the same commodity collude – are incompatible requirements under some mild assumptions. Our results build on a self-interesting link between multi-sided Böhm-Bawerk assignment games and bankruptcy games (O’Neill, 1982). We identify a particular subset of Böhm-Bawerk assignment games and we show that it is isomorphic to the whole class of bankruptcy games. This isomorphism enables us to show the uniqueness of the vector of vertical syndication-proof prices for the whole class of Böhm-Bawerk assignment market using well-known results of bankruptcy problems.
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
[spa] En este artículo hallamos fórmulas para el nucleolo de juegos de asignación arbitrarios con dos compradores y dos vendedores. Se analizan cinco casos distintos, dependiendo de las entradas en la matriz de asignación. Los resultados se extienden a los casos de juegos de asignación de tipo 2 x m o m x 2.
Resumo:
[cat] En aquest treball caracteritzem les solucions puntuals de jocs cooperatius d'utilitat transferible que compleixen selecció del core i monotonia agregada. També mostrem que aquestes dues propietats són compatibles amb la individualitat racional, la propietat del jugador fals i la propietat de simetria. Finalment, caracteritzem les solucions puntuals que compleixen les cinc propietats a l'hora.
Resumo:
In developmental research, the family has mainly been studied through dyadic interaction. Three-way interactions have received less attention, partly because of their complexity. This difficulty may be overcome by distinguishing between four hierarchically embedded functions in three-way interactions: (1) participation (inclusion of all participants), (2) organization (partners keeping to their roles), (3) focalization (sharing a common focus) and (4) affective contact (being in tune). We document this hierarchical model on a sample of 80 families observed in the Lausanne Trilogue Play situation across four different sites. Hierarchy between functions was demonstrated by means of Guttman scalability coefficient. Given the importance of the child's development in a threesome, the pertinence of this model for family assessment is discussed.
Resumo:
The Multiscale Finite Volume (MsFV) method has been developed to efficiently solve reservoir-scale problems while conserving fine-scale details. The method employs two grid levels: a fine grid and a coarse grid. The latter is used to calculate a coarse solution to the original problem, which is interpolated to the fine mesh. The coarse system is constructed from the fine-scale problem using restriction and prolongation operators that are obtained by introducing appropriate localization assumptions. Through a successive reconstruction step, the MsFV method is able to provide an approximate, but fully conservative fine-scale velocity field. For very large problems (e.g. one billion cell model), a two-level algorithm can remain computational expensive. Depending on the upscaling factor, the computational expense comes either from the costs associated with the solution of the coarse problem or from the construction of the local interpolators (basis functions). To ensure numerical efficiency in the former case, the MsFV concept can be reapplied to the coarse problem, leading to a new, coarser level of discretization. One challenge in the use of a multilevel MsFV technique is to find an efficient reconstruction step to obtain a conservative fine-scale velocity field. In this work, we introduce a three-level Multiscale Finite Volume method (MlMsFV) and give a detailed description of the reconstruction step. Complexity analyses of the original MsFV method and the new MlMsFV method are discussed, and their performances in terms of accuracy and efficiency are compared.
Resumo:
Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions.
Resumo:
The results of numerous economic games suggest that humans behave more cooperatively than would be expected if they were maximizing selfish interests. It has been argued that this is because individuals gain satisfaction from the success of others, and that such prosocial preferences require a novel evolutionary explanation. However, in previous games, imperfect behavior would automatically lead to an increase in cooperation, making it impossible to decouple any form of mistake or error from prosocial cooperative decisions. Here we empirically test between these alternatives by decoupling imperfect behavior from prosocial preferences in modified versions of the public goods game, in which individuals would maximize their selfish gain by completely (100%) cooperating. We found that, although this led to higher levels of cooperation, it did not lead to full cooperation, and individuals still perceived their group mates as competitors. This is inconsistent with either selfish or prosocial preferences, suggesting that the most parsimonious explanation is imperfect behavior triggered by psychological drives that can prevent both complete defection and complete cooperation. More generally, our results illustrate the caution that must be exercised when interpreting the evolutionary implications of economic experiments, especially the absolute level of cooperation in a particular treatment.
Resumo:
BACKGROUND: Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS: With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a typical all-polyethylene glenoid component: 2, 4 (reference) and 6mm. A loaded movement of abduction in the scapular plane was simulated. We evaluated the humeral head translation, the muscle moment arms, the joint force, the articular contact pattern, and the polyethylene and cement stress. Findings Decreasing polyethylene thickness from 6 to 2mm slightly increased humeral head translation and muscle moment arms. This induced a small decreased of the joint reaction force, but important increase of stress within the polyethylene and the cement mantel. Interpretation The reference thickness of 4mm seems a good compromise to avoid stress concentration and joint stuffing.
Resumo:
The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.