810 resultados para fibre carbonio CFRP pirolisi gassificazione riciclo
Resumo:
Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992-2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.
Resumo:
"Figures 24-93" ([58] p.) in pocket.
Resumo:
Glossary.
Resumo:
Printed in Great Britain.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Interindividual analyses of physiological performance represent one of the most powerful tools for identifying functional positive and negative linkages between various performance traits. In this study we investigated functional linkages in the whole-gastrocnemius performance of juvenile Bufo viridis by examining interindividual variation in in vitro muscle performance and muscle fibre-type composition. We used the work-loop technique to investigate the maximum in vitro power output and fatigue resistance of the gastrocnemius muscle during repeated sets of three cycles at the cycle frequency of 5 Hz, simulating an intermittent style of locomotion. We found several significant correlations between different measures of in vitro muscle performance, including a negative correlation between maximum net power output and fatigue resistance of power, indicating functional trade-offs between these performance traits. We also investigated the extent of individual variation in the proportions of different fibre types, and tested for correlations between individual variation in muscle fibre-type composition and the previously measured isolated muscle performance. Fast glycolytic fibres represented 84.0+/-3.4% of the muscle, while the combined slow oxidative and fast oxidative-glycolytic fibres represented 16+/-3.4%. We found no significant correlations between measures of in vitro muscle performance and the proportion of different fibre types in the gastrocnemius muscle. However, despite this lack of correlation between whole-muscle performance and muscle fibre-type composition data, we suggest the functional linkages detected between different measures of in vitro muscular performance have important ecological and evolutionary consequences.
Resumo:
A one-dimensional computational model of pilling of a fibre assembly has been created. The model follows a set of individual fibres, as free ends and loops appear as fuzz and arc progressively withdrawn from the body of the assembly, and entangle to form pills, which eventually break off or are pulled out. The time dependence of the computation is given by ticks, which correspond to cycles of a wear and laundering process. The movement of the fibres is treated as a reptation process. A set of standard values is used as inputs to the computation. Predictions arc given of the change with a number Of cycles of mass of fuzz, mass of pills, and mass removed from the assembly. Changes in the standard values allow sensitivity studies to be carried out.
Resumo:
The dynamics of fibre slippage within general non-bonded fibrous assemblies is studied in the situation where the assembly is subjected to general small cyclic loads. Two models are proposed. The first is applicable when the general cyclic loading is complemented by an occasional tugging force on one end of a fibre, which causes it to gradually withdraw from the assembly, such as might occur during the pilling of a textile. The second considers the situation in which the cyclic perturbations act around a constant background load applied to the assembly. The dynamics is reminiscent of self-organized critical behaviour. This model is applied to predict the progressive elongation of a single yarn during weaving.