1000 resultados para environmental text
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about mesoscale features related to the sampling date, time and location. Includes calculated averages of mesaurements made concurrently at the sampling location and depth, and calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
108
Resumo:
Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.
Resumo:
Activation of the recently identified c-Jun N-terminal kinases (JNKs) typically results in programmed cell death (apoptosis) in neurons and other cell types grown in culture. However, the effects of JNK activation in the central nervous system in vivo are unknown. At baseline, JNK activity in mice was on average 17-fold higher in brain than in peripheral organs, whereas JNK protein levels were similar. In brain, JNK was expressed primarily in neurons. Restraining mice or allowing them to explore a novel environment rapidly increased JNK activity 3- to 15-fold in various brain regions, but these manipulations did not increase brain activity of the extracellular signal-regulated kinase. Because noninvasive environmental stimuli that do not induce neurodegeneration elicited prominent increases in JNK activity in the brain, we conclude that acute activation of the JNK cascade in central nervous system neurons does not induce neuronal apoptosis in vivo. In contrast, the high baseline activity of JNK in the brain and the activation of the JNK cascade by environmental stimuli suggest that this kinase may play an important physiological role in neuronal function.
Resumo:
Plant cells can respond qualitatively and quantitatively to a wide range of environmental signals. Ca2+ is used as an intracellular signal for volume regulation in response to external osmotic changes. We show here that the spatiotemporal patterns of hypo-osmotically induced Ca2+ signals vary dramatically with stimulus strength in embryonic cells of the marine alga Fucus. Biphasic or multiphasic Ca2+ signals reflect Ca2+ elevations in distinct cellular domains. These propagate via elemental Ca2+ release in nuclear or peripheral regions that are rich in endoplasmic reticulum. Cell volume regulation specifically requires Ca2+ elevation in apical peripheral regions, whereas an altered cell division rate occurs only in response to stimuli that cause Ca2+ elevation in nuclear regions.