878 resultados para ensemble de niveau
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
Resumo:
A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.
Resumo:
We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-dependent averaging kernels that relate the CO2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement density and correlations, 4) the spatial resolution of estimated flux estimates, and 5) reducing the length of the lag window and the size of the ensemble. At the revision stage of this manuscript, the OCO instrument failed to reach its orbit after it was launched on 24 February 2009. The EnKF formulation presented here is also applicable to GOSAT measurements of CO2 and CH4.
Resumo:
The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).
Resumo:
Forecasting atmospheric blocking is one of the main problems facing medium-range weather forecasters in the extratropics. The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) provides an excellent basis for medium-range forecasting as it provides a number of different possible realizations of the meteorological future. This ensemble of forecasts attempts to account for uncertainties in both the initial conditions and the model formulation. Since 18 July 2000, routine output from the EPS has included the field of potential temperature on the potential vorticity (PV) D 2 PV units (PVU) surface, the dynamical tropopause. This has enabled the objective identification of blocking using an index based on the reversal of the meridional potential-temperature gradient. A year of EPS probability forecasts of Euro-Atlantic and Pacific blocking have been produced and are assessed in this paper, concentrating on the Euro-Atlantic sector. Standard verification techniques such as Brier scores, Relative Operating Characteristic (ROC) curves and reliability diagrams are used. It is shown that Euro-Atlantic sector-blocking forecasts are skilful relative to climatology out to 10 days, and are more skilful than the deterministic control forecast at all lead times. The EPS is also more skilful than a probabilistic version of this deterministic forecast, though the difference is smaller. In addition, it is shown that the onset of a sector-blocking episode is less well predicted than its decay. As the lead time increases, the probability forecasts tend towards a model climatology with slightly less blocking than is seen in the real atmosphere. This small under-forecasting bias in the blocking forecasts is possibly related to a westerly bias in the ECMWF model. Copyright © 2003 Royal Meteorological Society
Resumo:
Ensemble experiments are performed with five coupled atmosphere-ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales. albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.
Resumo:
The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) is a World Weather Research Programme project. One of its main objectives is to enhance collaboration on the development of ensemble prediction between operational centers and universities by increasing the availability of ensemble prediction system (EPS) data for research. This study analyzes the prediction of Northern Hemisphere extratropical cyclones by nine different EPSs archived as part of the TIGGE project for the 6-month time period of 1 February 2008–31 July 2008, which included a sample of 774 cyclones. An objective feature tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast verification statistics have then been produced [using the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis as the truth] for cyclone position, intensity, and propagation speed, showing large differences between the different EPSs. The results show that the ECMWF ensemble mean and control have the highest level of skill for all cyclone properties. The Japanese Meteorological Administration (JMA), the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC) have 1 day less skill for the position of cyclones throughout the forecast range. The relative performance of the different EPSs remains the same for cyclone intensity except for NCEP, which has larger errors than for position. NCEP, the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), and the Australian Bureau of Meteorology (BoM) all have faster intensity error growth in the earlier part of the forecast. They are also very underdispersive and significantly underpredict intensities, perhaps due to the comparatively low spatial resolutions of these EPSs not being able to accurately model the tilted structure essential to cyclone growth and decay. There is very little difference between the levels of skill of the ensemble mean and control for cyclone position, but the ensemble mean provides an advantage over the control for all EPSs except CPTEC in cyclone intensity and there is an advantage for propagation speed for all EPSs. ECMWF and JMA have an excellent spread–skill relationship for cyclone position. The EPSs are all much more underdispersive for cyclone intensity and propagation speed than for position, with ECMWF and CMC performing best for intensity and CMC performing best for propagation speed. ECMWF is the only EPS to consistently overpredict cyclone intensity, although the bias is small. BoM, NCEP, UKMO, and CPTEC significantly underpredict intensity and, interestingly, all the EPSs underpredict the propagation speed, that is, the cyclones move too slowly on average in all EPSs.
Resumo:
The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management