794 resultados para enhancement technologies
Resumo:
This case study explored value proposition and relationship marketing de-terminants in the HVAC (Heating, Ventilation and Air Conditioning) indus-try. Concretely, the case involved Purmo, a prominent brand and market leader radiator manufacturer, its relationship marketing practices with the retailers of their product (radiator installers) and the value proposition which is being used to reach the end-user. In the field work, five heating experts/entrepreneurs in the installation business were interviewed and asked about their opinion on Purmo and the end-user’s needs. The findings suggest that while installers appreciate Purmo as a supplier and respect it as a company, the loyalty that they have towards it has no repercussions on their product advocacy to ultimate consumers. Installers proved to be attracted to standard model radiators and to be apathetic to the benefits that more advanced models can provide. The reasons for this behavior were found to be their preference for products with better availa-bility and their reluctance to interfere with the customers’ decision making processes.
Resumo:
The concept of Process Management has been used by managers and consultants that search for the improvement of both operational or managerial industrial processes. Its strength is in focusing on the external client and on the optimization of the internal process in order to fulfill their needs. By the time the needs of internal clients are being sought, a set of improvements takes place. The Taguchi method, because of its claim for knowledge share between design engineers and people engaged in the process, is a candidate for process management implementation. The objective of this paper is to propose that kind of application aiming for improvements related with reliability of results revealed by the robust design of Taguchi method.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
The overall aim of this study was to investigate and examine teacher educators’ conceptions and experiences of quality of teacher education. The research interest therefore was two-fold: a) to deepen understanding of the concept quality and b) scrutinize experiences of teacher educators of quality enhancement. To achieve this ambition the study was conducted in the context of a newly established university college-based teacher education in Tanzania. Two research questions guided the study. The first focused on investigating how teacher educators conceived quality in the domain of teacher education and the second intended to explore teacher educators’ experiences of quality enhancement. The theoretical framework of the study centered on the concepts of teacher education, quality, and criteria for quality enhancement. Phenomenographic and phenomenological approaches under the main umbrella of qualitative research design were selected. Twenty five teacher educators participated in the study. Interviews were used for the collection of the data. The results of the first research question, in brief, indicate that teacher educators’ conceptions of quality are expressed in two main categories, namely, outstanding academic scholarship and adequate professional scholarship. Quality as outstanding academic scholarship was illustrated by two subcategories: excellence and positive transformation. While the former was composed of two aspects, the latter was demonstrated by three aspects. Quality as adequate professional scholarship was described in three sub-categories. The first was improved teaching competency, consisting of two aspects. The second was conscious research orientation, which is displayed by three aspects, and the last was enhancing the ability to reflect, represented by two aspects. The results of the second research question, which focused on exploring teacher educators’ experience of quality enhancement, were classified into two main categories of description: insufficient programs of teacher education and unsatisfactory professional development of teacher educators. From the two categories, the strengths, weaknesses, opportunities and challenges related to programs of educating teachers, particularly curriculum development and implementation, and the professional development of educators, were exposed. Since the ambition of conducting the study was to deepen the understanding by producing insight that would act as a platform for appraising and enhancing the quality of teacher education, the results hopefully can be used for the development of the quality of teacher education in Tanzania.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
The aim of this work is to perform an in-depth overview on the sustainability of several major commercialized technologies for water desalination and to identify the challenges and propose suggestions for the development of water desalination technologies. The overview of those technologies mainly focuses on the sustainability from the viewpoint of total capital investment, total product cost, energy consumption and global warming index. Additionally, a systematic sustainability assessment methodology has been introduced to validate the assessment process. Conclusions are:1) Reverse osmosis desalination (RO) plants are better than multi-stage flash distillation (MSF) desalination plants and multiple-effect distillation (MED) desalination plants from the viewpoint of energy consumption, global warming index and total production cost; 2)Though energy intensive, MSF plants and MED plants secure their advantages over RO plants by lower total capital investment, wider applicability and purer water desalted and they are still likely to flourish in energy-rich area;3) Water production stage and wastewater disposal stage are the two stages during which most pollutant gases are emitted. The water production stage alone contributes approximately 80~90% of the total pollutant gases emission during its life cycle; 4)The total capital cost per m3 desalted water decreases remarkably with the increasing of plant capacity. The differences between the capital cost per m3 desalted water of RO and other desalination plants will decrease as the capacity increases; 5) It is found that utilities costs serve as the major part of the total product cost, and they account for 91.16%, 85.55% and 71.26% of the total product cost for MSF, MED and RO plants, respectively; 6) The absolute superiority of given technology depends on the actual social-economic situation (energy prices, social policies, technology advancements).
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive) neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI) were used as the control or unconditioned responses (UR). Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US) to a train of short (0.1 s) hyperpolarizing electrical substitutive conditioning stimuli (SCS) in the Peri-Kästchen (PK) neuron were measured in four parameters, i.e., peak numbers (N) and amplitude ()averaged from 120 responses, sum of these amplitudes (SAMP) and the highest peak amplitude (V) over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US), but not backward (US-SCS), association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI) for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.
Resumo:
Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.
Resumo:
The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.
Resumo:
Several studies have documented that emotional arousal may enhance long-term memory. This is an adaptation of a paradigm previously used in North American and European samples in investigations of the influence of emotion on long-term retention. A sample of 46 healthy adults of high and low educational levels watched a slide presentation of stories. A randomly assigned group watched a story with an arousing content and another group watched a neutral story. The stories were matched for structure and comprehensibility and the set and order of the 11 slides were the same in both conditions. Immediately after viewing the slide presentation, the participants were asked to rate the emotionality of the narrative. The arousing narrative was rated as being more emotional than the neutral narrative (t (44) = -3.6, P<0.001). Ten days later subjects were asked to remember the story and answer a multiple-choice questionnaire about it. The subjects who watched the arousing story had higher scores in the free recall measure (t (44) = -2.59, P<0.01). There were no differences between groups in the multiple-choice test of recognition memory (t (44) = 0.26). These findings confirm that an emotional arousing content enhances long-term declarative memory and indicate the possibility of applying this instrument to clinical samples of various cultural backgrounds.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
The experiences of several healthcare organizations were considered to distinguish the most frequently used lean tools, the success and failure factors, and the obstacles that may appear while implementing lean. As a result, two approaches to “go lean” were defined, and analyzed from the prospective of the applicability to healthcare processes. Industrialization of healthcare was studied, and the most promising digital technology tools to improve healthcare process were highlighted. Finally, the analysis of healthcare challenges and feasible ways to address them was conducted and presented as the main result of this work. The possible ways of implementation of the findings and limitations were described in the conclusion.