876 resultados para energy balance
Resumo:
The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with greater control of emissions due to the passage of exhaust gases through a macro-porous ceramic bed. This paper presents an infrared burner commercial, which was adapted an experimental ejector, capable of promoting a mixture of liquefied petroleum gas (LPG) and glycerin. By varying the percentage of dual-fuel, it was evaluated the performance of the infrared burner by performing an energy balance and atmospheric emissions. It was introduced a temperature controller with thermocouple modulating two-stage (low heat / high heat), using solenoid valves for each fuel. The infrared burner has been tested and tests by varying the amount of glycerin inserted by a gravity feed system. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by a data acquisition system which recorded real-time measurements of the thermocouples attached. The burner had a stable combustion at levels of 15, 20 and 25% of adding glycerin in mass ratio of LPG gas, increasing the supply of heat to the plate. According to data obtained showed that there was an improvement in the efficiency of the 1st Law of infrared burner with increasing addition of glycerin. The emission levels of greenhouse gases produced by combustion (CO, NOx, SO2 and HC) met the environmental limits set by resolution No. 382/2006 of CONAMA
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner
Resumo:
Female hawksbill turtles (Eretmochelys imbricata) nesting along the southeastcoastline of Rio Grande do Norte State, Brazil (6º13'40"S, 35º03'05"W) were captured and weighed during the four months from January to April 2007, in the course of the annual egglaying season, which extended from 06 rd November 2006 to 30 rd May 2007. In all, 99 weight measurements were performed. On first contact the females exhibited an average post-oviposition weight of 79.1 kg (range 56.2-98.9 kg, SD = 10.9 kg, n = 44 females). Those individuals which were subsequently recaptured showed a mean weight loss of 1.7 kg (range 0.7-4.5 kg, SD = 1.0 kg, n = 39 sets of measurements on 20 females) in the interval between two consecutive post-ovipositions, separated by a maximum time interval of 17 days. In the cases where the female aborted the nesting process, the pre-oviposition weight was measured. The clutch weight, that is to say, the weight loss between consecutive pre-oviposition and post-oviposition measurements (separated by a maximum time interval of 3 days), was found to be 5.2 kg (range 4.3-6.0 kg, SD = 0.9 kg, n = 6 sets of measurements). This value is significantly higher (t-test, p<0.001) than the loss between two consecutive post-oviposition measurements with the same female. The mean recovery in body weight, that is to say, the average gain in weight between successive post-oviposition and pre-oviposition captures of the same individual (separated by a time interval of 12 to 17 days), was found to be 3.0 kg (range 1.9-4.3 kg, SD = 1.0 kg, n = 4 sets of measurements) Although the small sample size makes it unwise to generalise, the recovery in body weight was found to be always significantly lower (t-test, p<0.005) than the clutch weight. This fact is in agreement with the observed weight loss tendency throughout the breeding season for this species. Considering the clutch weight and the internidal recovery in body weight we found that the total weight loss of the adult hawksbill females after three to five nesting events varied from 10.4% (range 8.7-11.9%, SD = 1.6%, n = 3) to 14.1% (range 11.8-15.4%, SD = 1.3%, n = 6) in relation to their initial pre-oviposition weight. If there were no body weight recovery during the internesting interval we estimate that a female that nests three to five times in the course of the season would lose from 19% to 31% of its initial weight. We emphasise that our clutch weight estimate was performed by weighing the females and not by multiplying the number of eggs in the nest by their average unit weight. In this way, our measurements take into account the loss of liquid during the oviposition. Despite the unequivocal evidence of body weight recovery during the internidal interval, it is not clear if the cause of this process is rehydration or feeding
Resumo:
The dyslipidemia and excess weight in adolescents, when combined, suggest a progression of risk factors for cardiovascular disease (CVD). Besides these, the dietary habits and lifestyle have also been considered unsuitable impacting the development of chronic diseases. The study objectives were: (1) estimate the prevalence of lipid profile and correlate with body mass index (BMI), waist circumference (WC) and waist / height ratio (WHR) in adolescents, considering the maturation sexual, (2) know the sources of variance in the diet and the number of days needed to estimate the usual diet of adolescents and (3) describe the dietary patterns and lifestyle of adolescents, family history of CVD and age correlates them with the patterns of risk for CVD, adjusted for sexual maturation. A cross-sectional study was performed with 432 adolescents, aged 10-19 years from public schools of the Natal city, Brazil. The dyslipidemias were evaluated considering the lipid profile, the index of I Castelli (TC / HDL) and II (LDL / HDL) and non-HDL cholesterol. Anthropometric indicators were BMI, WC and WHR. The intake of energy, nutrients including fiber, fatty acids and cholesterol was estimated from two 24-hour recalls (24HR). The variables of lipid profile, anthropometric and clinical data were used in the models of Pearson correlation and linear regression, considering the sexual maturation. The variance ratio of the diet was calculated from the component-person variance, determined by analysis of variance (ANOVA). The definition of the number of days to estimate the usual intake of each nutrient was obtained by taking the hypothetical correlation (r) ≥ 0.9, between nutrient intake and the true observed. We used the principal component analysis as a method of extracting factors that 129 accounted for the dependent variables and known cardiovascular risk obtained from the lipid profile, the index for Castelli I and II, non-HDL cholesterol, BMI, and WC the WHR. Dietary patterns and lifestyle were obtained from the independent variables, based on nutrients consumed and physical activity weekly. In the study of principal component analysis (PCA) was investigated associations between the patterns of cardiovascular risk factors in dietary patterns and lifestyle, age and positive family history of CVD, through bivariate and multiple logistic regression adjusted for sexual maturation. The low HDL-C dyslipidemia was most prevalent (50.5%) for adolescents. Significant correlations were observed between hypercholesterolemia and positive family history of CVD (r = 0.19, p <0.01) and hypertriglyceridemia with BMI (r = 0.30, p <0.01), with the CC (r = 0.32, p <0.01) and WHR (r = 0.33, p <0.01). The linear model constructed with sexual maturation, age and BMI explained about 1 to 10.4% of the variation in the lipid profile. The sources of variance between individuals were greater for all nutrients in both sexes. The reasons for variances were 1 for all nutrients were higher in females. The results suggest that to assess the diet of adolescents with greater precision, 2 days would be enough to R24h consumption of energy, carbohydrates, fiber, saturated and monounsaturated fatty acids. In contrast, 3 days would be recommended for protein, lipid, polyunsaturated fatty acids and cholesterol. Two cardiovascular risk factors as have been extracted in the ACP, referring to the dependent variables: the standard lipid profile (HDL-C and non-HDL cholesterol) and "standard anthropometric index (BMI, WC, WHR) with a power explaining 75% of the variance of the original data. The factors are representative of two independent variables led to dietary patterns, "pattern 130 western diet" and "pattern protein diet", and one on the lifestyle, "pattern energy balance". Together, these patterns provide an explanation power of 67%. Made adjustment for sexual maturation in males remained significant variables: the associations between puberty and be pattern anthropometric indicator (OR = 3.32, CI 1.34 to 8.17%), and between family history of CVD and the pattern lipid profile (OR = 2.62, CI 1.20 to 5.72%). In females adolescents, associations were identified between age after the first stage of puberty with anthropometric pattern (OR = 3.59, CI 1.58 to 8.17%) and lipid profile (OR = 0.33, CI 0.15 to 0.75%). Conclusions: The low HDL-C was the most prevalent dyslipidemia independent of sex and nutritional status of adolescents. Hypercholesterolemia was influenced by family history of CVD and sexual maturation, in turn, hypertriglyceridemia was closely associated with anthropometric indicators. The variance between the diets was greater for all nutrients. This fact reflected in a variance ratio less than 1 and consequently in a lower number of days requerid to estimate the usual diet of adolescents considering gender. The two dietary patterns were extracted and the pattern considered unhealthy lifestyle as healthy. The associations were found between the patterns of CVD risk with age and family history of CVD in the studied adolescents
Resumo:
This work deals with the Priestley-Taylor model for evapotranspiration in different grown stages of a bean crop. Priestley and Taylor derived a practical Formulation for energy partitioning between the sensible and latent heat fluxes through the a parameter. Bowen ratio energy balance (BREB) was carried out for daily sensible and latent heat flux estimations in three different crop stages. Mean daily values of Priestley-Taylor a parameter were determined for eleven days during the crop cycle. Diurnal variation patterns of a are presented for the growing, flowering and graining periods. The mean values of 1.13 +/- 0.33, 1.26 +/- 0.74, 1.22 +/- 0.55 were obtained for a day in the growing, in the flowering and for graining periods, respectively. Eleven days values of a are shown and gave a mean value of 1.23 +/- 0.10 which agree on the reported literature.
Resumo:
Foi realizado um experimento para avaliar a digestibilidade aparente de dietas e o metabolismo de suínos alimentados com dietas contendo bentonita sódica submetidos a diferentes programas alimentares. Foram utilizados 24 suínos machos castrados, meio irmãos paternos, com peso vivo médio inicial de 42,2kg, alojados em gaiolas metabólicas. O delineamento experimental foi o inteiramente casualizado com três níveis de bentonita sódica (0,0; 0,3 e 0,5%) e dois programas alimentares (restrito e à vontade), com oito repetições cada. A adição de bentonita sódica não alterou (P>0,05) o consumo de ração e os balanços da energia e do nitrogênio. O consumo de ração diferiu (P<0,01) entre a alimentação restrita e à vontade (1,17 vs. 2,19kg d-1). O programa alimentar alterou (P<0,05) o balanço do N, mas não afetou (P>0,05) a retenção de N pelos animais. A alimentação à vontade alterou (P<0,05) o balanço da energia, sobretudo a energia retida (3.825 vs. 3.013kcal d-1). A adição de 0,5% de bentonita sódica nas dietas reduziu em 9% (P<0,01) a excreção fecal de fósforo. A adição de bentonita sódica nas dietas de suínos não altera os balanços da energia e do N nem as digestibilidades aparentes do Ca, Mg, Zn, Cu e Mn. A adição de bentonita sódica reduz a excreção fecal de fósforo. Não há interação entre o programa alimentar e a adição de bentonita sódica nas dietas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objetivou-se, neste trabalho, determinar os balanços de radiação e energia da cultura de alface (Lactuca sativa, L. cv. Verônica) em estufa de polietileno. O experimento foi realizado em uma estufa tipo túnel alto com cobertura de polietileno (100 mim de espessura) e em uma área externa, ambas com 35 m². Durante o ciclo da cultura, foram monitoradas as radiações global e refletida, saldo de radiação, fluxo de calor no solo e temperatura do ar (seca e úmida) nos dois meios. Utilizou-se um Datalogger que operou na freqüência de 1 Hz, armazenando médias de cinco minutos. A partir das integrações diárias das irradiâncias global (K¯) e refletida (K), verificou-se que a transmissividade média da radiação global (K¯in / K¯ex) foi aproximadamente constante, em torno de 79,59%, enquanto a razão das radiações refletidas (Kin / Kex) foi igual a 69,21% com coeficiente de variação de 8,47%. As curvas normalizadas do saldo de radiação de ondas curtas em relação à radiação global (K* / K¯), nos dois meios, mostraram ser aproximadamente constantes no início do ciclo e decrescentes no final. A relação (Rn/ K¯) foi maior no meio externo, em torno de 12%, a partir da fase em que a superfície verde da cultura cobriu o solo. O balanço médio (L*) de radiação de ondas longas foi maior no exterior, em torno de 50%. O balanço de energia, estimado em termos de fluxos verticais, mostrou, em média, que: no exterior, 83,07% do saldo de radiação foi convertido em calor latente (LE), 18,00% em fluxo de calor no solo (G) e 9,96% em calor sensível (H), enquanto que, no interior da estufa, 58,71% do saldo de radiação foi convertido em LE, 42,68% em H e 28,79% em G.
Resumo:
Avaliaram-se, diariamente, neste trabalho, o saldo de radiação (SR), o fluxo de calor no solo (G), o fluxo de calor latente de evaporação (LE) e o fluxo de calor sensível (H) ao longo do ciclo da cultura de pepineiro cultivado dentro e fora de casa de vegetação em ciclo de outono-inverno e primavera-verão. O SR e o G foram quantificados e o LE e o H estimados em dois níveis distintos pelo método da razão de Bowen. Os resultados mostram que a maior parte da energia disponível foi utilizada no fluxo de calor latente de evaporação e que os componentes do balanço de energia apresentaram-se mais consistentes em níveis próximos ao dossel da cultura e em ambiente protegido.
Resumo:
The generation for termoeletricity is characterized as a solid process of conversion of thermal energy (heat) in electric without the necessity of mobile parts. Although the conversion process is of low efficiency the system presents high degree of trustworthiness and low requisite of maintenance and durability. Its principle is based on the studies of termogeneration carried through by Thomas Seebeck in 1800. The frank development of the technologies of solid state for termoeletricity generation, the necessity of the best exploitation of the energy, also with incentive the cogeneration processes, the reduction of the ambient impact allies to the development of modules semiconductors of high efficiency, converge to the use of the thermoeletric generation through components of solid state in remote applications. The work presents the development, construction and performance evaluation of an prototype, in pilot scale, for energy tri-generation aiming at application in remote areas. The unit is composed of a gas lamp as primary source of energy, a module commercial semiconductor for thermoelectric generation and a shirt for production of the luminosity. The project of the device made compatible a headstock for adaptation in the gas lamp, a hot source for adaptation of the module, an exchanger of to be used heat as cold source and to compose first stage of cogeneration, an exchanger of tubular heat to compose second stage of cogeneration, the elaboration of a converter dc-dc type push pull, adequacy of a system of acquisition of temperature. It was become fullfilled assembly of the prototype in group of benches for tests and assay in the full load condition in order to evaluate its efficiency, had been carried through energy balance of the unit. The prototype presented an electric efficiency of 0,73%, thermal of 56,55%, illumination of 1,35% and global of 58,62%. The developed prototype, as the adopted methodology of assay had also taken care of to the considered objectives, making possible the attainment of conclusive results concerning to the experiment. Optimization in the system of setting of the semicondutor module, improvement in the thermal insulation and design of the prototype and system of protection to the user are suggestions to become it a commercial product
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
In energy systems, the balance of entrances, exits and losses are fundamental to rationalize the energy consumption, independently of the source (sun, natural gas, wind, water, firewood or oil). This estimate is important so much in the phase of project of the facilities, as in the exploration or operation. In the project phase it indicates the energy needs of the process and the contribution of the energy in the cost of the product and the capacity of storage of the fuel and in the operation phase it allows to evaluate the use of the energy in the process of it burns, showing the weak points that should suffer intervention to improve the efficiency. With this tool, it can be implemented routines of calculation of thermal balances in ovens of it burns of structural ceramic, in way to generate an optimized mathematical model for application in the current and promising structural ceramic brazilian industry. The ceramic oven in study is located in the metropolitan area of Natal (Rio Grande do Norte) and it is a continuous oven of the type wagons tunnel, converted of firewood for natural gas and it produces blocks of red ceramic. The energy balance was applied in the oven tunnel before and after the conversion and made the comparisons of the energy efficiencies (it burns to the firewood and it burns to natural gas), what showed that the gaseous fuel is more efficient when we burn structural ceramic in ovens tunnels. When we burn natural gas, the requested energy is smaller and better used. Tests were accomplished in the burned product that showed the best quality of the burned brick with natural gas. That quality improvement makes possible to accomplish new interventions for the most rational use of the energy in the oven tunnel of the Ceramic in study and in the industries of structural ceramic of the whole Brazil, that need control tools of burning and of quality
Resumo:
O objetivo deste trabalho foi caracterizar e relacionar a radiação líquida com o calor latente equivalente, em mm de água, nos cultivos protegido e de campo, na cultura de pimentão. O experimento foi feito em Botucatu, SP. A estimativa do fluxo de calor latente foi feita pelo método do balanço de energia, por meio da razão de Bowen. Foram feitas medidas instantâneas da radiação líquida (Rn), dos fluxos convectivos de calor latente (LE) e sensível (H), do fluxo de calor no solo (G), e dos gradientes psicrométricos sobre a cultura. O cultivo protegido, apesar de receber menor quantidade de radiação solar global, foi mais eficiente na conversão da radiação líquida disponível em matéria seca total e na produtividade de frutos. No balanço de energia, o cultivo protegido apresentou razões G/Rn e LE/Rn inferiores e H/Rn superior, com um fluxo de calor latente, equivalente em milímetros, 45,43% menor que no cultivo no campo. Apresentou, ainda, menor quantidade de radiação líquida disponível e menores perdas de energia, mostrando-se mais eficiente no uso da água.
Resumo:
With the need to deploy management and monitoring systems of natural resources in areas susceptible to environmental degradation, as is the case of semiarid regions, several works have been developed in order to find effective models and technically and economically viable. Therefore, this study aimed to estimate the daily actual evapotranspiration (ETr) through the application of the Surface Energy Balance Algorithm for Land (SEBAL), from remote sensing products, in a semiarid region, Seridó of the Rio Grande do Norte, and do the validation of these estimates using ETr values obtained by the Penman-Monteith (standard method of the Food and Agriculture Organization-FAO). The SEBAL is based on energy balance method, which allows obtaining the vertical latent heat flux (LE) with orbital images and, consequently, of the evapotranspiration through the difference of flows, also vertical, of heat in the soil (G), sensitive heat (H) and radiation balance (Rn). The study area includes the surrounding areas of the Dourado reservoir, located in the Currais Novos/RN city. For the implementation of the algorithm were used five images TM/Landsat-5. The work was divided in three chapters in order to facilitate a better discussion of each part of the SEBAL processing, distributed as follows: first chapter addressing the spatio-temporal variability of the biophysical variables; second chapter dealing with spatio-temporal distribution of instant and daily radiation balance; and the third chapter discussing the heart of the work, the daily actual evapotranspiration estimation and the validation than to the study area
Resumo:
This research analyzed the energetic consumption of etanol from the corn crops (Zea mays 14 The field surveys were carried out in the Midle Paranapanema River Region, São Paulo state, Brazil, in the period from January to December 2007 The energy consumption on stage of production and industrial processing of grain were evaluated It was verified that the total energetic cost of the crop production corresponded to 15,633 7MJ ha(-1), and the most onerous item was the inputs (77 5%) In the industrial step, the energetic consumption was equivalent to 3.882.2MJ r(-1) The operations of hydrolysis, saccharification and treatment of the broth represented 50 2% of the total energetic expenditure It was also observed an energetic cost of 7 9MJ L(-1) in relation to the atonal produced in the main crop production operations, and II 8MJ L(-1) in the industrial processing The energy balance of crop production and industrialization was of 1 2MJ.