819 resultados para e-learning systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhimilliseen turvallisuuteen kriisinhallinnan kautta – oppimisen mahdollisuuksia ja haasteita Kylmän sodan jälkeen aseelliset konfliktit ovat yleensä alkaneet niin sanotuissa hauraissa valtioissa ja köyhissä maissa, ne ovat olleet valtioiden sisäisiä ja niihin on osallistunut ei-valtiollisia aseellisia ryhmittymiä. Usein ne johtavat konfliktikierteeseen, jossa sota ja vakaammat olot vaihtelevat. Koska kuolleisuus konflikteissa voi jäädä alle kansainvälisen määritelmän (1000 kuollutta vuodessa), kutsun tällaisia konflikteja ”uusiksi konflikteiksi”. Kansainvälinen yhteisö on pyrkinyt kehittämään kriisinhallinnan ja rauhanrakentamisen malleja, jotta pysyvä rauhantila saataisiin aikaiseksi. Inhimillinen turvallisuus perustuu näkemykseen, jossa kunnioitetaan jokaisen yksilön ihmisoikeuksia ja jolla on vaikutusta myös kriisinhallinnan ja rauhanrakentamisen toteuttamiseen. Tutkimukseen kuuluu kaksi empiiristä osaa: Delfoi tulevaisuuspaneeliprosessin sekä kriisinhallintahenkilöstön haastattelut. Viisitoista eri alojen kriisinhallinta-asiantuntijaa osallistui paneeliin, joka toteutettiin vuonna 2008. Paneelin tulosten mukaan tulevat konfliktit usein ovat uusien konfliktien kaltaisia. Lisäksi kriisinhallintahenkilöstöltä edellytetään vuorovaikutus- ja kommunikaatiokykyä ja luonnollisesti myös varsinaisia ammatillisia valmiuksia. Tulevaisuuspaneeli korosti vuorovaikutus- ja kommunikaatiotaitoja erityisesti siviilikriisinhallintahenkilöstön kompetensseissa, mutta samat taidot painottuivat sotilaallisen kriisinhallinnan henkilöstön kompetensseissakin. Kriisinhallinnassa tarvitaan myös selvää työnjakoa eri toimijoiden kesken. Kosovossa työskennelleen henkilöstön haastatteluaineisto koostui yhteensä 27 teemahaastattelusta. Haastateltavista 9 oli ammattiupseeria, 10 reservistä rekrytoitua rauhanturvaajaa ja 8 siviilikriisinhallinnassa työskennellyttä henkilöä. Haastattelut toteutettiin helmi- ja kesäkuun välisenä aikana vuonna 2008. Haastattelutuloksissa korostui vuorovaikutus- ja kommunikaatiotaitojen merkitys, sillä monissa käytännön tilanteissa haastateltavat olivat ratkoneet ongelmia yhteistyössä muun kriisinhallintahenkilöstön tai paikallisten asukkaiden kanssa. Kriisinhallinnassa toteutui oppimisprosesseja, jotka usein olivat luonteeltaan myönteisiä ja informaalisia. Tällaisten onnistumisten vaikutus yksilön minäkuvaan oli myönteinen. Tällaisia prosesseja voidaan kuvata ”itseä koskeviksi oivalluksiksi”. Kriisinhallintatehtävissä oppimisella on erityinen merkitys, jos halutaan kehittää toimintoja inhimillisen turvallisuuden edistämiseksi. Siksi on tärkeää, että kriisinhallintakoulutusta ja kriisinhallintatyössä oppimista kehitetään ottamaan huomioon oppimisen eri tasot ja ulottuvuudet sekä niiden merkitys. Informaaliset oppimisen muodot olisi otettava paremmin huomioon kriisinhallintakoulutusta ja kriisinhallintatehtävissä oppimista kehitettäessä. Palautejärjestelmää olisi kehitettävä eri tavoin. Koko kriisinhallintaoperaation on saatava tarvittaessa myös kriittistä palautetta onnistumisista ja epäonnistumisista. Monet kriisinhallinnassa työskennelleet kaipaavat kunnollista palautetta työrupeamastaan. Liian rutiininomaiseksi koettu palaute ei edistä yksilön oppimista. Spontaanisti monet haastatellut pitivät tärkeänä, että kriisinhallinnassa työskennelleillä olisi mahdollisuus debriefing- tyyppiseen kotiinpaluukeskusteluun. Pelkkä tällainen mahdollisuus ilmeisesti voisi olla monelle myönteinen uutinen, vaikka tilaisuutta ei hyödynnettäisikään. Paluu kriisinhallintatehtävistä Suomeen on monelle haasteellisempaa kuin näissä tehtävissä työskentelyn aloittaminen ulkomailla. Tutkimuksen tulokset kannustavat tutkimaan kriisinhallintaa oppimisen näkökulmasta. On myös olennaista, että kriisinhallinnan palautejärjestelmiä kehitetään mahdollisimman hyvin edistämään sekä yksilöllistä että organisatorista oppimista kriisinhallinnassa. Kriisinhallintaoperaatio on oppimisympäristö. Kriisinhallintahenkilöstön kommunikaatio- ja vuorovaikutustaitojen kehittäminen on olennaista tavoiteltaessa kestävää rauhanprosessia, jossa konfliktialueen asukkaatkin ovat mukana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Julkaisumaa: 530 AN ANT Alankomaiden Antillit

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral dissertation investigates the adult education policy of the European Union (EU) in the framework of the Lisbon agenda 2000–2010, with a particular focus on the changes of policy orientation that occurred during this reference decade. The year 2006 can be considered, in fact, a turning point for the EU policy-making in the adult learning sector: a radical shift from a wide--ranging and comprehensive conception of educating adults towards a vocationally oriented understanding of this field and policy area has been observed, in particular in the second half of the so--called ‘Lisbon decade’. In this light, one of the principal objectives of the mainstream policy set by the Lisbon Strategy, that of fostering all forms of participation of adults in lifelong learning paths, appears to have muted its political background and vision in a very short period of time, reflecting an underlying polarisation and progressive transformation of European policy orientations. Hence, by means of content analysis and process tracing, it is shown that the new target of the EU adult education policy, in this framework, has shifted from citizens to workers, and the competence development model, borrowed from the corporate sector, has been established as the reference for the new policy road maps. This study draws on the theory of governance architectures and applies a post-ontological perspective to discuss whether the above trends are intrinsically due to the nature of the Lisbon Strategy, which encompasses education policies, and to what extent supranational actors and phenomena such as globalisation influence the European governance and decision--making. Moreover, it is shown that the way in which the EU is shaping the upgrading of skills and competences of adult learners is modeled around the needs of the ‘knowledge economy’, thus according a great deal of importance to the ‘new skills for new jobs’ and perhaps not enough to life skills in its broader sense which include, for example, social and civic competences: these are actually often promoted but rarely implemented in depth in the EU policy documents. In this framework, it is conveyed how different EU policy areas are intertwined and interrelated with global phenomena, and it is emphasised how far the building of the EU education systems should play a crucial role in the formation of critical thinking, civic competences and skills for a sustainable democratic citizenship, from which a truly cohesive and inclusive society fundamentally depend, and a model of environmental and cosmopolitan adult education is proposed in order to address the challenges of the new millennium. In conclusion, an appraisal of the EU’s public policy, along with some personal thoughts on how progress might be pursued and actualised, is outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile augmented reality applications are increasingly utilized as a medium for enhancing learning and engagement in history education. Although these digital devices facilitate learning through immersive and appealing experiences, their design should be driven by theories of learning and instruction. We provide an overview of an evidence-based approach to optimize the development of mobile augmented reality applications that teaches students about history. Our research aims to evaluate and model the impacts of design parameters towards learning and engagement. The research program is interdisciplinary in that we apply techniques derived from design-based experiments and educational data mining. We outline the methodological and analytical techniques as well as discuss the implications of the anticipated findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lors de ces dix dernières années, le coût de la maintenance des systèmes orientés objets s'est accru jusqu' à compter pour plus de 70% du coût total des systèmes. Cette situation est due à plusieurs facteurs, parmi lesquels les plus importants sont: l'imprécision des spécifications des utilisateurs, l'environnement d'exécution changeant rapidement et la mauvaise qualité interne des systèmes. Parmi tous ces facteurs, le seul sur lequel nous ayons un réel contrôle est la qualité interne des systèmes. De nombreux modèles de qualité ont été proposés dans la littérature pour contribuer à contrôler la qualité. Cependant, la plupart de ces modèles utilisent des métriques de classes (nombre de méthodes d'une classe par exemple) ou des métriques de relations entre classes (couplage entre deux classes par exemple) pour mesurer les attributs internes des systèmes. Pourtant, la qualité des systèmes par objets ne dépend pas uniquement de la structure de leurs classes et que mesurent les métriques, mais aussi de la façon dont celles-ci sont organisées, c'est-à-dire de leur conception, qui se manifeste généralement à travers les patrons de conception et les anti-patrons. Dans cette thèse nous proposons la méthode DEQUALITE, qui permet de construire systématiquement des modèles de qualité prenant en compte non seulement les attributs internes des systèmes (grâce aux métriques), mais aussi leur conception (grâce aux patrons de conception et anti-patrons). Cette méthode utilise une approche par apprentissage basée sur les réseaux bayésiens et s'appuie sur les résultats d'une série d'expériences portant sur l'évaluation de l'impact des patrons de conception et des anti-patrons sur la qualité des systèmes. Ces expériences réalisées sur 9 grands systèmes libres orientés objet nous permettent de formuler les conclusions suivantes: • Contre l'intuition, les patrons de conception n'améliorent pas toujours la qualité des systèmes; les implantations très couplées de patrons de conception par exemple affectent la structure des classes et ont un impact négatif sur leur propension aux changements et aux fautes. • Les classes participantes dans des anti-atrons sont beaucoup plus susceptibles de changer et d'être impliquées dans des corrections de fautes que les autres classes d'un système. • Un pourcentage non négligeable de classes sont impliquées simultanément dans des patrons de conception et dans des anti-patrons. Les patrons de conception ont un effet positif en ce sens qu'ils atténuent les anti-patrons. Nous appliquons et validons notre méthode sur trois systèmes libres orientés objet afin de démontrer l'apport de la conception des systèmes dans l'évaluation de la qualité.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse présente une revue des réflexions récentes et plus traditionnelles provenant de la théorie des systèmes, de la créativité en emploi, des théories d’organisation du travail et de la motivation afin de proposer une perspective psychologique de la régulation des actions des individus au sein d’environnements de travail complexes et incertains. Des composantes de la Théorie de la Régulation de l’Action (Frese & Zapf, 1994) ainsi que de la Théorie de l’Auto-Détermination (Deci & Ryan, 2000) sont mises en relation afin d’évaluer un modèle définissant certains schémas cognitifs clés associés aux tâches individuelles et collectives en emploi. Nous proposons que ces schémas cognitifs, organisés de manière hiérarchique, jouent un rôle central dans la régulation d’une action efficace au sein d’un système social adaptatif. Nos mesures de ces schémas cognitifs sont basées sur des échelles de mesure proposées dans le cadre des recherches sur l’ambiguïté de rôle (eg. Sawyer, 1992; Breaugh & Colihan, 1994) et sont mis en relation avec des mesures de satisfaction des besoins psychologiques (Van den Broeck, Vansteenkiste, De Witte, Soenens & Lens, 2009) et du bien-être psychologique (Goldberg, 1972). Des données provenant de 153 employés à temps plein d’une compagnie de jeu vidéo ont été récoltées à travers deux temps de mesure. Les résultats révèlent que différents types de schémas cognitifs associés aux tâches individuelles et collectives sont liés à la satisfaction de différents types de besoin psychologiques et que ces derniers sont eux-mêmes liés au bien-être psychologique. Les résultats supportent également l’hypothèse d’une organisation hiérarchique des schémas cognitifs sur la base de leur niveau d’abstraction et de leur proximité avec l’exécution concrète de l’action. Ces résultats permettent de fournir une explication initiale au processus par lequel les différents types de schémas cognitifs développés en emplois et influencé par l’environnement de travail sont associés à l’attitude des employés et à leur bien-être psychologique. Les implications pratiques et théoriques pour la motivation, l’apprentissage, l’habilitation, le bien-être psychologique et l’organisation du travail dans les environnements de travail complexes et incertains sont discutés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents Reinforcement Learning (RL) approaches to Economic Dispatch problem. In this paper, formulation of Economic Dispatch as a multi stage decision making problem is carried out, then two variants of RL algorithms are presented. A third algorithm which takes into consideration the transmission losses is also explained. Efficiency and flexibility of the proposed algorithms are demonstrated through different representative systems: a three generator system with given generation cost table, IEEE 30 bus system with quadratic cost functions, 10 generator system having piecewise quadratic cost functions and a 20 generator system considering transmission losses. A comparison of the computation times of different algorithms is also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses