894 resultados para drought feeding
Resumo:
Grazing of dominant zooplankton copepods (Calanoides acutus. and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for less than or equal to 1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study, even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development.
Resumo:
Tank-reared Japanese flounder larvae, Paralichthys olivaceus, had a major feeding peak in the morning and a secondary peak in the afternoon throughout the larval development, with light being the primary factor regulating their feeding activity. The larvae consumed rotifers in preference to Artemia for up to 10 days, after which the food preference shifted to Artemia. Feeding rates of the larvae prior to 10 days post-batch depended on prey density, but in the old larvae, feeding rates were independent of prey density. Maximum feeding rate occurred at 19 degrees C. The occurrence of the attack posture, after its onset at first feeding (2 days post-hatch), increased up to 25 days, began to decrease when the larvae prepared to settle down, then disappeared after settlement. The occurrence frequency of the attack posture was positively related to fish density, but inversely related to starvation duration, and occurred most frequently at 19 degrees C. This posture depended on prey density in larvae prior to 10 days post-hatch, but became independent of prey density as the larvae developed. It was obvious that, for flounder larvae, attack posture was a behavioural character closely related to feeding and subject to larval development and environmental factors. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
The Bohai Sea was the site of the Chinese national GLOBEC programme. During the June 1997 cruises of R/V Science No.1, observations and experiments on zooplankton feeding were conducted. At five 48 h time-series stations the following observations and measurements on zooplankton were carried out: (1) diurnal vertical migration, by collecting samples at different layers every 3 h with a closing net; (2) diurnal feeding rhythms, by gut pigment analysis; and (3) ingestion rate, by both gut pigment analysis and the dilution method. A classification by body size was used to deal with the diversity of species and developmental stages of zooplankton assemblages. Samples were separated into three size groups: small (200-500 mu m), medium (500-1000 mu m) and large (> 1000 mu m). The results showed that the copepods (Calanus sinicus, Paracalanus parvus, Acartia bifilosa and Centropages mcmurrichi) performed clear diurnal vertical migrations. However, their behaviour was different at different stations. The variation in gut pigment content over the 24 h cycle showed strong diurnal feeding rhythms, particularly for the large size group. Gut pigment contents reached their daily maximum during the time from dusk to midnight (18:00-24:00). The peak value was about 10 times the minimum observed in the daytime. The in situ daily grazing rate, based on gut pigment contents and evacuation experiments, was 4.00-12.65 ng chla ind(-1) day(-1) for the small size group, 5.99-66.58 ng chla ind(-1) day(-1) for the medium size group and 31.31-237.13 ng chla ind(-1) day(-1) for the large size group. The copepods consumed only a small part (2.90-13.52%) of the phytoplankton biomass hut about 77% of the daily production. The grazing mortality rate of phytoplankton by microzooplankton (<200 mu m) measured by the dilution method ranged from 0.43 to 0.69 day(-1) The calculated daily consumption of phytoplankton biomass was 35-50%, and 85-319% of the potential production.
Resumo:
The effects of the timing of first feeding (0, 1 and 2 days after yolk exhaustion) and starvation on the point-of-no-return (PNR), survival and growth of laboratory-reared rock bream larvae were studied under controlled conditions. Larvae began to feed exogenously at 3 days after hatching (dah) and reached PNR on 54 h after yolk exhaustion at 22 +/- 1.5 degrees C. Larvae growth was significantly affected by the time of first exogenous feeding. The growth of 0 day delayed first feeding larvae was obviously faster than those of the other delayed first feeding larvae (P<0.05) whether at 7 dab (SL=3.40 mm, SGR=5.7, CV=4.0) or at 15 dah (SL=4.85 mm, SGR=6.1, CV=8.2) with a more uniform size distribution. Survival of 0 day delayed first feeding larvae and I day delayed first feeding larvae was 13% and 8% at the end of experiment, respectively, while no larvae survived up to 7 dah for 2 days delayed first feeding larvae and unfed larvae. Food resulted in a progressive deterioration of the larval digestive system and atrophy of skeletal muscle fibre. The ratios of head length to SL (standard length), body height to SL and eye diameter to SL were the most sensitive morphometric indices to detect the effects of fasting on larval condition. Present results showed that the combination of morphological and morphometric variables could be used to evaluate the nutritional condition of rock bream larvae. In order to avoid the potential mortality and gain better development, survival and growth in industrial production, the rock bream larvae must establish successful first feeding within 2 days after yolk exhaustion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pigment ingestion rate (PIR) and egg production rate (EPR) of the dominant copepod Calanus sinicus, as well as chlorophyll-a concentration and phytoplankton assemblages were measured in the Bohai Sea, North China in June 1997, October 1998 and May 1999. A herbivore index (H) was also calculated as the carbon specific ratio of PIR and EPR, in order to investigate its feeding habits in the spring and autumn phytoplankton bloom respectively. On average, chlorophyll-a concentration was relatively similar (1-1.34 mg m(-3)) in the three cruises, but PIR was quite different. It was 3.24 mu g C female(-1) d(-1) in October, equivalent to one half of the PIR for June and one third of the PIR for May. Average EPR was highest in May, and quite similar during the other two months. According to H values, herbivorous feeding contributed 100% of the egg production of C. sinicus in June, 82.5% in May, but only 47.8% in October. It is possible that omnivorous feeding of C. sinicus in October was induced by a prevalence of large-sized diatoms and sufficient non-phytoplankton food resources during the autumn bloom period.
Resumo:
Suspension aquaculture of filter-feeding bivalves has been developing rapidly in coastal waters in the world, especially in China. Previous studies have demonstrated that dense populations of filter-feeding bivalves in shallow water can produce a large amount of faeces and pseudofaeces (biodeposits) that may lead to negative impacts on the benthic environment. To determine whether the deposit feeder Stichopus (Apostichopus) japonicus Selenka can feed on bivalve biodeposits and whether the sea cucumber can be co-cultured with bivalves in suspended lantern nets, three experiments were conducted, two in tanks in the laboratory and one in the field. In a 3-month flow-through experiment, results showed that sea cucumbers grew well with specific growth rate (SGR) reaching 1.38% d(-1), when cultured in the bottom of tanks (10 m(3) water volume) where scallops were cultured in suspension in lantern nets. Moreover, results of another laboratory experiment demonstrated that sea cucumbers could survive well on bivalve biodeposits, with a feeding rate of 1.82 +/- 0.13 g dry biodeposits ind(-1) d(-1), absorption efficiency of organic matter in biodeposits of 17.2% +/- 5.5%, and average SGR of 1.60% d(-1). Our longer-term field experiments in two coastal bays (Sishili Bay and Jiaozhou Bay, northern China) showed that S. japonicus co-cultured with bivalves also grew well at growth rates (0.09-0.31 g wet weight ind(-1) d(-1)) depending on individual size. The results suggest that bivalve lantern nets can provide a good habitat for sea cucumbers; and the co-culture of bivalve molluscs with sea cucumbers may provide an additional valuable crop with no additional inputs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Of the present estimated world population of 14.2 million yaks, approximately 13.3 million occur within Chinese territories (Food and Agriculture Organization of the United Nations, 2003). Although there is an extensive bibliography covering the species, few studies have been conducted in the area of foraging behaviour. The present study was conducted at pasture during the spring, transitional, summer and winter seasons to determine the daily temporal patterns of grazing and ruminating behaviour by yaks. During each study period, two 24 h recordings were undertaken with each of six mature dairy yaks. One study period was conducted on each of the transitional, summer and winter pastures, whereas, due to the considerable changes occurring in the morphology of the spring pasture, three separate studies were completed during March, April and May. During the second of these studies (April), the effect of level of concentrate supplementation on grazing and ruminating behaviour was also examined. Behaviour recordings were made using solid-state behaviour recorders. Short-term intake rates (IR, g min(-1)) were calculated by weighing yaks before and after approximately 1 h of grazing, retaining the faeces and urine excreted and applying a correction for insensible weight loss. Yaks spent less time grazing during the dry season (the early period on the spring pasture) compared with the later green swards (the later period on the spring pasture, the transitional pasture and the summer pasture) (P < 0.05). When the forage quality improved, but there was still insufficient mass (the later period on the spring pasture), the yaks extended their grazing time at the expense of other activities. During the early periods on the spring pasture, the short-term IR by yaks was up to 53 g DM min(-1), significantly higher than at other times (P < 0.05). The level of concentrate offered had little or no effect on grazing or ruminating time. The total eating time of the yaks offered 0.5 or 1.0 kg concentrate was 2.9 and 4.5 h day(-1) respectively, significantly lower than unsupplemented yaks (6.8 h) (P < 0.05). In general, yaks can regulate their foraging behaviour according to the changes of sward conditions in order to achieve optimal grazing strategies. (C) 2007 Published by Elsevier B.V.
Resumo:
Males of many insect species feed their partner during courtship and mating. Studies of male nutrient donation in various systems have established that nuptial feeding has evolved mostly through sexual selection. Although there is extensive diversity in form, the function of nuptial gifts is typically limited to either facilitating copulation or increasing ejaculate transfer, depending on the time at which the gift is consumed by females. Unlike other insects, the Hawaiian swordtail cricket Laupala (Gryllidae: Trigonidiinae) exhibits serial transfer of nuptial gifts. Males transfer multiple spermless 'micro' spermatophores over several hours before mating at the end of the day (i.e. before the transfer of a single sperm-containing 'macro' spermatophore). By experimental manipulation of male microspermatophore donation, I tested several hypotheses pertaining to the adaptive significance of nuptial gifts in this system. I found that microspermatophore transfer improves insemination, by causing the female reproductive tract to take in more sperm. This result reveals a previously undocumented function for premating nuptial gift donation among insects. Enhanced sperm transfer due to microspermatophore donation may represent male manipulation or an internal mechanism of post-copulatory choice by females. I also performed experimental manipulation of male photoperiod to investigate how time and gender influence nuptial gift production and mating behavior. I found that the timing of mating is limited in males but not females and that the time of pair formation has consequences for the degree of nuptial gift donation, which suggests that both mating timing and microspermatophore number is important for male reproductive success. Finally, I observed the mating behavior of several trigonidiine taxa for a comparative analysis of sexual behavior and found that other genera also utilize spermless microspermatophores, which suggests that microspermatophore donation may be a common nuptial gift strategy among swordtail crickets. The elaborate nuptial feeding behavior of Hawaiian swordtail crickets prior to mating represents a newly discovered strategy to increase male insemination success rather than mating success. Based on this unexpected result, it is worth exploring whether courtship behaviors in other cricket or insect mating systems have also evolved to increase sperm uptake.
Resumo:
The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.
Resumo:
BACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.
Resumo:
p.71-81