962 resultados para doping
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.
Resumo:
Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.
Resumo:
Put Britney Spears into a YouTube search and the third auto-fill on the list is “Britney Spears without Autotune”. Auto-Tune has become the music industry equivalent of doping in the Tour de France circa 2005; we know everyone’s doing it, but we still have a sense of surprise and outrage when it becomes public. In the last week or so a video has surfaced of the pop singer Britney Spears – with examples of her vocal before and after processing. Whether or not the “before” version is actually the raw material for the “after” version is difficult to say. What’s not difficult to say is that the “before” vocal is distinctly lacking in a demonstrable ability to sing in tune.
Resumo:
The aluminum (Al) doped polycrystalline p-type β-phase iron disilicide (p-β-FeSi2) is grown by thermal diffusion of Al from Al-passivated n-type Si(100) surface into FeSi2 during crystallization of amorphous FeSi2 to form a p-type β-FeSi 2/n-Si(100) heterostructure solar cell. The structural and photovoltaic properties of p-type β-FeSi2/n-type c-Si structures is then investigated in detail by using X-ray diffraction, Raman spectroscopy, transmission electron microscopy analysis, and electrical characterization. The results are compared with Al-doped p-β-FeSi2 prepared by using cosputtering of Al and FeSi2 layers on Al-passivated n-Si(100) substrates. A significant improvement in the maximum open-circuit voltage (Voc) from 120 to 320 mV is achieved upon the introduction of Al doping through cosputtering of Al and amorphous FeSi2 layer. The improvement in Voc is attributed to better structural quality of Al-doped FeSi2 film through Al doping and to the formation of high quality crystalline interface between Al-doped β-FeSi2 and n-type c-Si. The effects of Al-out diffusion on the performance of heterostructure solar cells have been investigated and discussed in detail.
Resumo:
Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.
Resumo:
We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.
Resumo:
Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron
Resumo:
An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.
Resumo:
During the coverage of breaking news and broadcasts on social media, journalists and audiences alike share links, comments, and opinions in response to new developments. On Twitter, such content can gain increased visibility by receiving retweets from other users, through automated functions, or by manually republishing and modifying comments. This article studies tweeted coverage of the doping scandal involving Lance Armstrong in 2012 and 2013. Humorous framing is found to be popular in this discussion, and such comments experience different longevity to breaking news tweets. With these patterns come new opportunities for users to modify and appropriate punch lines in attempts to receive increased attention—and for the serendipitous creation of similar jokes—which raise questions of authorship and attribution.
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.
Resumo:
We have measured the thermopower (S) of hole-doped LaMnO3 systems in order to see its dependence on the Mn4+ content as well as to investigate other crucial factors that determine S. We have carried out hole doping (creation of Mn4+ by two distinct means, namely, by the substitution of La by divalent cations such as Ca and Sr and by self-doping without aliovalent substitution). The thermopower is sensitive not only to the hole concentration but also to the process employed for hole doping, which we explain as arising from the differences in the nature of the hole-doped states. We also point out a general trend in the dependence of S on hole concentration at high temperatures (T> T-c), similar to that found in the normal-state thermopower of the cuprates.