946 resultados para dominant symbols
Resumo:
Despite the fact that plankton plays an important role in biogeochemical processes in oceans, data on its elemental composition, particularly in shelf seas of the Arctic Ocean, have thus far been insufficient. This communication, which is devoted to a comparative analysis of the elemental composition of plankton and bottom sediments in the White Sea, is part of the comprehensive investigation of the region that is occurring in line with the International Project ''Land-Ocean Interaction in the Russian Arctic'' (LOIRA).
Resumo:
Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Individual respiration rates were standardised to a mean copepod body mass and a temperature regime typical of the northern Benguela Current. These adjusted respiration rates revealed two different activity levels (active and resting) in copepodids C5 of Calanoides carinatus and females of Rhincalanus nasutus, which reduced their metabolism during dormancy by 82% and 62%, respectively. An allometric function (Imax) and an energy budget approach were performed to calculate ingestion rates. Imax generally overestimated the ingestion rates derived from the energy budget approach by >75%. We suggest that the energy budget approach is the more reliable approximation with a total calanoid copepod (mainly females) consumption of 78 mg C m-2 d-1 in neritic regions and 21 mg C m-2 d-1 in oceanic regions. The two primarily herbivorous copepods C. carinatus (neritic) and Nannocalanus minor (oceanic) contributed 83% and 5%, respectively, to total consumption by calanoid copepods. Locally, C. carinatus can remove up to 90% of the diatom biomass daily. In contrast, the maximum daily removal of dinoflagellate biomass by N. minor was 9%. These estimates imply that C. carinatus is an important primary consumers in the neritic province of the northern Benguela system, while N. minor has little grazing impact on phytoplankton populations further offshore. Data on energy requirements and total consumption rates of dominant calanoid copepods of this study are essential for the development of realistic carbon budgets and food-web models for the northern Benguela upwelling system.