827 resultados para disaster recovery
Resumo:
BACKGROUND: Upper limb paresis remains a relevant challenge in stroke rehabilitation. AIM: To evaluate if adding mirror therapy (MT) to conventional therapy (CT) can improve motor recovery of the upper limb in subacute stroke patients. DESIGN: Prospective, single-center, single-blind, randomised, controlled trial. SETTING: Subacute stroke patients referred to a Physical and Rehabilitation Medicine Unit between October 2009 and August 2011. POPULATION: Twenty-six subacute stroke patients (time from stroke <4 weeks) with upper limb paresis (Motricity Index â0/00¤ 77). METHODS: Patients were randomly allocated to the MT (N.=13) or to the CT group (N.=13). Both followed a comprehensive rehabilitative treatment. In addition, MT Group had 30 minutes of MT while the CT group had 30 minutes of sham therapy. Action Research Arm Test (ARAT) was the primary outcome measures. Motricity Index (MI) and the Functional Independence Measure (FIM) were the secondary outcome measures. RESULTS: After one month of treatment patients of both groups showed statistically significant improvements in all the variables measured (P<0.05). Moreover patients of the MT group had greater improvements in the ARAT, MI and FIM values compared to CT group (P<0.01, Glass's Î" Effect Size: 1.18). No relevant adverse event was recorded during the study. CONCLUSION: MT is a promising and easy method to improve motor recovery of the upper limb in subacute stroke patients. CLINICAL REHABILITATION IMPACT: While MT use has been advocated for acute patients with no or negligible motor function, it can be usefully extended to patients who show partial motor recovery. The easiness of implementation, the low cost and the acceptability makes this therapy an useful tool in stroke rehabilitation.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
The susceptibility of blood changes after administration of a paramagnetic contrast agent that shortens T(1). Concomitantly, the resonance frequency of the blood vessels shifts in a geometry-dependent way. This frequency change may be exploited for incremental contrast generation by applying a frequency-selective saturation prepulse prior to the imaging sequence. The dual origin of vascular enhancement depending first on off-resonance and second on T(1) lowering was investigated in vitro, together with the geometry dependence of the signal at 3T. First results obtained in an in vivo rabbit model are presented.
Resumo:
BACKGROUND: Protocols for enhanced recovery provide comprehensive and evidence-based guidelines for best perioperative care. Protocol implementation may reduce complication rates and enhance functional recovery and, as a result of this, also reduce length-of-stay in hospital. There is no comprehensive framework available for pancreaticoduodenectomy. METHODS: An international working group constructed within the Enhanced Recovery After Surgery (ERAS(®)) Society constructed a comprehensive and evidence-based framework for best perioperative care for pancreaticoduodenectomy patients. Data were retrieved from standard databases and personal archives. Evidence and recommendations were classified according to the GRADE system and reached through consensus in the group. The quality of evidence was rated "high", "moderate", "low" or "very low". Recommendations were graded as "strong" or "weak". RESULTS: Comprehensive guidelines are presented. Available evidence is summarised and recommendations given for 27 care items. The quality of evidence varies substantially and further research is needed for many issues to improve the strength of evidence and grade of recommendations. CONCLUSIONS: The present evidence-based guidelines provide the necessary platform upon which to base a unified protocol for perioperative care for pancreaticoduodenectomy. A unified protocol allows for comparison between centres and across national borders. It facilitates multi-institutional prospective cohort registries and adequately powered randomised trials.
Resumo:
To report a case of clinical and electrophysiological recovery in Leber hereditary optic neuropathy (LHON) with G3460A Mutation. A 10-year-old boy with a three-month history of painless bilateral sequential visual loss upon presentation underwent visual acuity (diminished), anterior and posterior segment examination (normal), fluorescein angiography (normal), Goldman kinetic perimetry (bilateral central scotomata), genetic (a point G3460A mutation) and electrophysiological investigation (undetectable pattern visual evoked potentials (VEP); low amplitude, broadened and reduced flash VEPs and loss of the N95 component in the pattern electroretinograms). Diagnosis of LHON was made. Eighteen months later vision and electrophysiological tests results began spontaneously improving. Kinetic perimetry revealed reduced density and size of scotomata. Two years later, there had been further electrophysiological improvement. This report describes both clinical and electrophysiological improvement in LHON with G3460A mutation.
Resumo:
In May 2011, very heavy rains combined with above average snowpack caused reservoirs throughout the Upper Missouri River basin to swell. The river carried more water in May and June than it does in an average year. The six Iowa counties bordering the river—Fremont, Harrison, Mills, Monona, Pottawattamie and Woodbury—suffered from major flooding which persisted throughout the spring and summer. On June 2, Governor Terry Branstad issued a Proclamation of Disaster Emergency for the six impacted counties. The Iowa Homeland Security and Emergency Management Division (HSEMD) activated the State Emergency Operations Center (SEOC) on June 10 to coordinate State, Federal, private sector, and voluntary agency preparedness and response activities in the affected area. The severity and duration of the flooding presented operational challenges for the SEOC and its partner agencies, which were further complicated by severe weather. The flooding forced the SEOC to conduct simultaneous response and recovery operations for an usually long period of time. The Missouri River floods caused major economic losses in Western Iowa. As a result of these economic losses, President Barack Obama issued a Major Disaster Declaration (FEMA-1998-DR) which made six counties eligible for Federal Public Assistance. The disaster declaration was subsequently amended on October 18, making five counties eligible for Federal Individual Assistance.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
OBJECTIVES: To determine characteristics associated with single and multiple fallers during postacute rehabilitation and to investigate the relationship among falls, rehabilitation outcomes, and health services use. DESIGN: Retrospective cohort study. SETTING: Geriatric postacute rehabilitation hospital. PARTICIPANTS: Patients (n = 4026) consecutively admitted over a 5-year period (2003-2007). MEASUREMENTS: All falls during hospitalization were prospectively recorded. Collected patients' characteristics included health, functional, cognitive, and affective status data. Length of stay and discharge destination were retrieved from the administrative database. RESULTS: During rehabilitation stay, 11.4% (458/4026) of patients fell once and an additional 6.3% (253/4026) fell several times. Compared with nonfallers, fallers were older and more frequently men. They were globally frailer, with lower Barthel score and more comorbidities, cognitive impairment, and depressive symptoms. In multivariate analyses, compared with 1-time fallers, multiple fallers were more likely to have lower Barthel score (adjOR: 2.45, 95% CI: 1.48-4.07; P = .001), cognitive impairment (adjOR: 1.43, 95% CI: 1.04-1.96; P = .026), and to have been admitted from a medicine ward (adjOR: 1.55, 95% CI: 1.03-2.32; P = .035). Odds of poor functional recovery and institutionalization at discharge, as well as length of stay, increased incrementally from nonfallers to 1-time and to multiple fallers. CONCLUSION: In these patients admitted to postacute rehabilitation, the proportion of fallers and multiple fallers was high. Multiple fallers were particularly at risk of poor functional recovery and increased health services use. Specific fall prevention programs targeting high-risk patients with cognitive impairment and low functional status should be developed in further studies.
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Resumo:
Delayed recovery has been advocated to limit the postoperative stress linked to awakening from anesthesia, but data on this subject are lacking. In this study, we measured oxygen consumption (V(O2)) and plasma catecholamine concentrations as markers of postoperative stress. We tested the hypothesis that delayed recovery and extubation would attenuate metabolic changes after intracranial surgery. Thirty patients were included in a prospective, open study and were randomized into two groups. In Group I, the patients were tracheally extubated as soon as possible after surgery. In Group II, the patients were sedated with propofol for 2 h after surgery. V(O2), catecholamine concentration, mean arterial pressure (MAP), and heart rate (HR) were measured during anesthesia, at extubation, and 30 min after extubation. V(O2) and noradrenaline on extubation and mean V(O2) during recovery were significantly higher in Group II than in Group I (V(O2) for Group I: preextubation 215 +/- 46 mL/min, recovery 198 +/- 38 mL/min; for Group II: preextubation 320 +/- 75 mL/min, recovery 268 +/- 49 mL/min; noradrenaline on extubation for Group I: 207 +/- 76 pg/mL, for Group II: 374 +/- 236 pg/ mL). Extubation induced a significant increase in MAP. MAP, HR, and adrenaline values were not statistically different between groups. In conclusion, delayed recovery after neurosurgery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence from general anesthesia. IMPLICATIONS: In this study, we tested the hypothesis that delayed recovery after neurosurgery would attenuate the consequences of recovery from general anesthesia. As markers of stress, oxygen consumption and noradrenaline blood levels were higher after delayed versus early recovery. Thus, delayed recovery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence after neurosurgery.
Resumo:
BACKGROUND: A major goal of antiretroviral therapy (ART) for HIV-1-infected persons is the recovery of CD4 T lymphocytes, resulting in thorough protection against opportunistic complications. Interruptions of ART are still frequent. The long-term effect on CD4 T-cell recovery and clinical events remains unknown. METHODS: Immunological and clinical endpoints were evaluated in 2491 participants of the Swiss HIV Cohort Study initiating ART during a mean follow-up of 7.1 years. Data were analysed in persons with treatment interruptions (n = 1271; group A), continuous ART, but intermittent HIV-1 RNA at least 1000 copies/ml (n = 469; group B) and continuous ART and HIV-1 RNA constantly less than 1000 copies/ml (n = 751; group C). Risk factors for low CD4 T-cell counts and clinical events were analysed using Cox proportional hazards models. RESULTS: In groups A-C, CD4 T lymphocytes increased to a median of 427, 525 and 645 cells/μl at 8 years. In group A, 63.0 and 37.2% reached above 350 and 500 CD4 T cells/μl, whereas in group B 76.3 and 55.8% and in group C 87.3 and 68.0% reached these thresholds (P < 0.001). CD4 T-cell recovery directly depended on the cumulative duration of treatment interruptions. In addition, participants of group A had more Centers for Disease Control and Prevention B/C events, resulting in an increased risk of death. Major risk factors for not reaching CD4 T cells above 500 cells/μl included lower baseline CD4 T-cell count, higher age and hepatitis C virus co-infection. CONCLUSION: In persons receiving continuous ART larger CD4 T-cell recovery and a reduced risk for opportunistic complications and death was observed. CD4 T-cell recovery was smaller in persons with treatment interruptions more than 6 months.
Resumo:
BACKGROUND: Enhanced recovery protocols have been proven to decrease complications and hospital stay following elective colorectal surgery. However, these principles have not yet been reported for urgent surgery procedures. We aimed to assess our initial experience with urgent colectomies performed within an established enhanced recovery pathway. METHODS: In a prospective cohort study, all patients undergoing colonic resection between April 2012 and March 2013 were treated according to a standardized enhanced recovery protocol. Urgent surgeries were compared with the elective procedures with regards to baseline characteristics, compliance with enhanced recovery items, and clinical outcome. RESULTS: Patients (N = 28) requiring urgent colonic resection were included and compared with patients undergoing elective colectomy (N = 63). Overall compliance with the protocol was 57% for the urgent compared with 77% for the elective procedures (p = 0.006). The pre-operative compliance was 64 versus 96% (p < 0.001), the intra-operative compliance was 77 versus 86% (p = 0.145), and the post-operative compliance was 49 versus 67% (p = 0.015), for the urgent and elective resections, respectively. Overall, 18 urgent patients (64%) and 32 elective patients (51%) developed postoperative complications (p = 0.261). Median postoperative length of stay was 8 days in the urgent setting compared with 5 days in the elective setting (p = 0.006). CONCLUSIONS: Many of the intra-operative and post-operative enhanced recovery items can also be applied to urgent colectomy, entailing outcomes that approach the results achieved in the elective setting.
Resumo:
We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.
Resumo:
The objective of this work was to evaluate Zn use efficiency by upland rice genotypes. The experiment was carried out in a greenhouse, with ten upland rice genotypes grown on an Oxisol (Typic Hapludox) with no application, and with application of 10 mg kg-1 Zn, applied as zinc sulfate. Shoot dry weight, grain yield, Zn harvest index, Zn concentration in shoot and in grain were significantly influenced by soil Zn levels and genotypes. However, panicle number and grain harvest index were significantly affected only by genotype. Genotypes CNA8557, CNA8540 and IR42 produced higher grain yield than other genotypes. Genotypes showed significant variability in Zn recovery efficiency. On average, 13% of the applied Zn was recovered by upland rice genotypes. Genotypes with high Zn recovery efficiency could be used in breeding of Zn efficient upland rice cultivars. Higher level of soil Zn (10 mg kg-1) increased significantly the concentrations of plant Cu and Mn. However, Fe concentrations in plant (shoot and grain) were not influenced by soil Zn levels.