880 resultados para developmental phenotype


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the young. In contrast, the differentiation between males and females generally depends upon whether eggs are fertilized, with fertilized (diploid) eggs giving rise to females and unfertilized (haploid) eggs giving rise to males. To obtain a comprehensive picture of the relative contributions of gender (sex), caste, developmental stage, and species divergence to gene expression evolution, we investigated gene expression patterns in pupal and adult queens, workers, and males of two species of fire ants, Solenopsis invicta and S. richteri. Microarray hybridizations revealed that variation in gene expression profiles is influenced more by developmental stage than by caste membership, sex, or species identity. The second major contributor to variation in gene expression was the combination of sex and caste. Although workers and queens share equivalent diploid nuclear genomes, they have highly distinctive patterns of gene expression in both the pupal and the adult stages, as might be expected given their extraordinary level of phenotypic differentiation. Overall, the difference in the proportion of differentially expressed genes was greater between workers and males than between workers and queens or queens and males, consistent with the fact that workers and males share neither gender nor reproductive capability. Moreover, between-species comparisons revealed that the greatest difference in gene expression patterns occurred in adult workers, a finding consistent with the fact that adult workers most directly experience the distinct external environments characterizing the different habitats occupied by the two species. Thus, much of the evolution of gene expression in ants may occur in the worker caste, despite the fact that these individuals are largely or completely sterile. Analyses of gene expression evolution revealed a combination of positive selection and relaxation of stabilizing selection as important factors driving the evolution of such genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a consanguineous Arab family in which three sibs had an unusual skeletal dysplasia characterized by anterior defects of the spine leading to severe lumbar kyphosis and marked brachydactyly with cone epiphyses. The clinical phenotype also included dysmorphic facial features, epilepsy, and developmental delay. This constellation likely represents a previously undescribed skeletal dysplasia, most probably inherited in an autosomal recessive pattern. A homozygosity mapping approach has thus far failed to unearth the responsible gene as the region shared by these three sibs is 27.7 Mb in size and contains over 200 genes with no obvious candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to explore the genotype-phenotype of Jervell and Lange-Nielsen syndrome (JLNS) patients in Saudi Arabia. We have also assessed the plausible effect of consanguinity into the pathology of JLNS. Six families with at least one JLNS-affected member attended our clinic between 2011 and 2013. Retrospective and prospective clinical data were collected and genetic investigation was performed. Pathogenic mutations in the KCNQ1 gene were detected in all JLNS patients. The homozygous mutations detected were Leu273Phe, Asp202Asn, Ile567Thr, and c.1486_1487delCT and compound heterozygous mutations were c.820_ 830del and c.1251+1G>T. All living JLNS patients except one had a QTc of >500 ms and a history of recurrent syncope. β-Blockers abolished the cardiac-related events in all patients except two siblings with homozygous Ile567Thr mutation. Four of the six mutations were originally reported in autosomal dominant long QT syndrome (LQTS) patients. Eighty percent of the heterozygote mutation carriers showed prolongation of QTc, but majority of these reported no symptoms attributable to arrhythmias. Mutations detected in this study will be advantageous in tribe and region-specific cascade screening of LQTS in Saudi Arabia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Among the many definitions of frailty, the frailty phenotype defined by Fried et al. is one of few constructs that has been repeatedly validated: first in the Cardiovascular Health Study (CHS) and subsequently in other large cohorts in the North America. In Europe, the Survey of Health, Aging and Retirement in Europe (SHARE) is a gold mine of individual, economic and health information that can provide insight into better understanding of frailty across diverse population settings. A recent adaptation of the original five CHS-frailty criteria was proposed to make use of SHARE data and measure frailty in the European population. To test the validity of the SHARE operationalized frailty phenotype, this study aims to evaluate its prospective association with adverse health outcomes. METHODS: Data are from 11,015 community-dwelling men and women aged 60+ participating in wave 1 and 2 of the Survey of Health, Aging and Retirement in Europe, a population-based survey. Multivariate logistic regression analyses were used to assess the 2-year follow up effect of SHARE-operationalized frailty phenotype on the incidence of disability (disability-free at baseline) and on worsening disability and morbidity, adjusting for age, sex, income and baseline morbidity and disability. RESULTS: At 2-year follow up, frail individuals were at increased risk for: developing mobility (OR 3.07, 95% CI, 1.02-9.36), IADL (OR 5.52, 95% CI, 3.76-8.10) and BADL (OR 5.13, 95% CI, 3.53-7.44) disability; worsening mobility (OR 2.94, 95% CI, 2.19- 3.93) IADL (OR 4.43, 95% CI, 3.19-6.15) and BADL disability (OR 4.53, 95% CI, 3.14-6.54); and worsening morbidity (OR 1.77, 95% CI, 1.35-2.32). These associations were significant even among the prefrail, but with a lower magnitude of effect. CONCLUSIONS: The SHARE-operationalized frailty phenotype is significantly associated with all tested health outcomes independent of baseline morbidity and disability in community-dwelling men and women aged 60 and older living in Europe. The robustness of results validate the use of this phenotype in the SHARE survey for future research on frailty in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : A preliminary understanding of the phenotypic effect of copy number variation (CNV) of DNA segments is emerging. These rearrangements were shown to influence, in a somewhat dose-dependent manner, the expression of genes mapping within them. They were also shown to modify the expression of genes located on their Hanks, sometimes at great distance. Here, we demonstrate by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained through life. However, 'we find that some brain- expressed genes mapping within CNVS appear to be under compensatory loops only at specific time-points, indicating that the effect of CNVS on these genes is modulated during development. Notably, we also observe that CNV genes are significantly enriched within transcripts that show variable time-course expression between strains. Thus, modifying the copy number of a gene may potentially alter not only its expression level, but its timing of expression as well. Résume : Nous commençons à comprendre les effets phénotypiques liés aux séquences d'ADN qui changent de nombre de copies d'un individu a l'autre. Des travaux précédents ont montré que ces variante de nombre de copies (CNVS) avaient une influence sur l'expression non seulement des gènes se trouvant dans le réarrangement, mais aussi sur ceux se trouvant à une certaine distance. Le présent travail étudie ces effets à différents stades du développement de la souris allant d'un embryon de deux semaines à la souris adulte. Nous avons observé que certains gènes exprimés dans le cerveau semblent soumis à un contrôle plus strict a certaines étapes du développement suggèrent que l'effet des CNVs est modulé différemment au cours de la vie. Notre travail sur trois souches différentes de souris a permis de montrer que les gènes ayant un profil d'expression différent dans le temps entre souches sont enrichis en gènes se trouvant dans des CNVs. Ceci nous amène à penser que les CNVs ont, non seulement une influence sur le niveau d'expression des gènes, mais aussi sur les moments durant lesquels ils seront exprimés. Résumé pour un large public : De nombreuses maladies sont dues soit a un gain (on parle alors de duplication) soit à une perte de matériel génétique (il s'agit dune délétion). Bien que les recherches visant à identifier les mécanismes moléculaires liés à ces réarrangements de notre génome progressent continuellement, la plupart des causes des maladies génétiques restent à élucider. Certaines parties de notre génome sont présentes en un nombre de copies qui diffère d'un individu à l'autre sans pour autant provoquer une ou des maladies. Ces segments d'ADN qui varient en nombre sont appelés Copy Number Variant (CNVs). Ils couvrent environ 12% de notre matériel génétique. Des études menées sur différents modèles animaux ont montré que les CNVs avaient une influence aussi bien sur les gènes qui sont a l'intérieur des CNVs que sur ceux qui sont dans leur voisinage. Ce travail étudie l'effet des CNVs à travers différents stades du développement de la souris. Nous avons démontré que les segments d'ADN qui varient en nombre de copies ont des effets variables selon le stade auxquels ils sont mesurés. Ainsi, les CNVs ont non seulement un impact sur l'expression des gènes présents dans ces régions et dans leur voisinage, mais influencent également leurs profils d'expression au cours du temps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les pressions écologiques peuvent varier tant en nature qu'en intensité dans le temps et l'espace. C'est pourquoi, un phénotype unique ne peut pas forcément conférer la meilleure valeur sélective. La plasticité phénotypique peut être un moyen de s'accommoder de cette situation, en augmentant globalement la tolérance aux changements environnementaux. Comme pour tout trait de caractère, une variation génétique doit persister pour qu'évoluent les traits plastiques dans une population donnée. Cependant, les pressions extérieures peuvent affecter l'héritabilité, et la direction de ces changements peut dépendre du caractère en question, de l'espèce mais aussi du type de stress. Dans la présente thèse, nous avons cherché à élucider les effets des pressions pathogéniques sur les phénotypes et la génétique quantitative de plusieurs traits plastiques chez les embryons de deux salmonidés, la palée (Coregonus palaea), et la truite de rivière (Salmo trutta). Les salmonidés se prêtent à de telles études du fait de leur extraordinaire variabilité morphologique, comportementale et des traits d'histoire de vie. Par ailleurs, avec le déclin des salmonidés dans le monde, il est important de savoir combien la variabilité génétique persiste dans les normes de réaction afin d'aider à prédire leur capacité à répondre aux changements de leur milieu. Nous avons observé qu'une augmentation de la croissance des communautés microbiennes symbiotiques entraînait une mortalité accrue et une éclosion précoce chez la palée, et dévoilait la variance génétique additive pour ces deux caractères (Chapitres 1-2). Bien qu'aucune variation génétique n'ait été trouvée pour les normes de réaction, nous avons observé une variabilité de la plasticité d'éclosion. Néanmoins, on a trouvé que les temps d'éclosion étaient corrélés entre les environnements, ce qui pourrait limiter l'évolution de la norme de réaction. Le temps d'éclosion des embryons est lié à la taille des géniteurs mâles, ce qui indique des effets pléiotropiques. Dans le Chapitre 3, nous avons montré qu'une interaction triple entre la souche bactérienne {Pseudomonas fluorescens}, l'état de dévelopement de l'hôte ainsi que ses gènes ont une influence sur la mortalité, le temps d'éclosion et la taille des alevins de la palée. Nous avons démontré qu'une variation génétique subsistait généralement dans les normes de réaction des temps d'éclosion, mais rarement pour la taille des alevins, et jamais pour la mortalité. Dans le même temps, nous avons exhibé que des corrélations entre environnements dépendaient des caractères phénotypiques, mais contrairement au Chapitre 2, nous n'avons pas trouvé de preuve de corrélations transgénérationnelles. Le Chapitre 4 complète le chapitre précédent, en se plaçant du point de vue moléculaire, et décrit comment le traitement d'embryons avec P. fluorescens s'est traduit par une régulation négative d'expression du CMH-I indépendemment de la souche bactérienne. Nous avons non seulement trouvé une variation génétique des caractères phénotypiques moyens, mais aussi de la plasticité. Les deux derniers chapitres traitent de l'investigation, chez la truite de rivière, des différences spécifiques entre populations pour des normes de réaction induites par les pathogènes. Dans le Chapitre 5, nous avons illustré que le métissage entre des populations génétiquement distinctes n'affectait en rien la hauteur ou la forme des normes de réaction d'un trait précoce d'histoire de vie suite au traitement pathogénique. De surcroît, en dépit de l'éclosion tardive et de la réduction de la taille des alevins, le traitement n'a pas modifié la variation héritable des traits de caractère. D'autre part, dans le Chapitre 6, nous avons démontré que le traitement d'embryons avec des stimuli contenus dans l'eau de conspécifiques infectés a entraîné des réponses propre à chaque population en terme de temps d'éclosion ; néanmoins, nous avons observé peu de variabilité génétique des normes de réaction pour ce temps d'éclosion au sein des populations. - Ecological stressors can vary in type and intensity over space and time, and as such, a single phenotype may not confer the highest fitness. Phenotypic plasticity can act as a means to accommodate this situation, increasing overall tolerance to environmental change. As with any trait, for plastic traits to evolve in a population, genetic variation must persist. However, environmental stress can alter trait heritability, and the direction of this shift can be trait, species, and stressor-dependent. In this thesis, we sought to understand the effects of pathogen stressors on the phenotypes and genetic architecture of several plastic traits in the embryos of two salmonids, the whitefish (Coregonus palaea), and the brown trout (Salmo trutta). Salmonids lend themselves to such studies because their extraordinary variability in morphological, behavioral, and life-history traits. Also, with declines in salmonids worldwide, knowing how much genetic variability persists in reaction norms may help predict their ability to respond to environmental change. We found that increasing growth of symbiotic microbial communities increased mortality and induced hatching in whitefish, and released additive genetic variance for both traits (Chapters 1-2). While no genetic variation was found for survival reaction norms, we did find variability in hatching plasticity. Nevertheless, hatching time was correlated across environments, which could constrain evolution of the reaction norm. Hatching time in the induced environment was also correlated to sire size, indicating pleiotropic effects. In Chapter 3 we report that a three-way interaction between bacterial strain (Pseudomonas fluorescens), host developmental stage, and host genetics impacted mortality, hatching time, and hatchling size in whitefish. We also showed that genetic variation generally persisted in hatching age reaction norms, but rarely for hatchling length, and never for mortality. At the same time, we demonstrated that cross-environmental correlations were trait-dependent, and unlike Chapter 2, we found no evidence of cross-generational correlations. Chapter 4 expands on the previous chapter, moving to the molecular level, and describes how treatment of embryos with P. fluorescens resulted in strain-independent downregulation of MHC class I. Genetic variation was evident not only in trait means, but also in plasticity. In the last two chapters, we investigated population level differences in pathogen- induced reaction norms in brown trout. In Chapter 5, we found that interbreeding between genetically distinct populations did not affect the elevation or shapes of the reaction norms of early life-history traits after pathogen challenge. Moreover, despite delaying hatching and reducing larval length, treatment produced no discernable shifts in heritable variation in traits. On the other hand, in Chapter 6, we found that treatment of embryos with water-borne cues from infected conspecifics elicited population-specific responses in terms of hatching time; however, we found little evidence of genetic variability in hatching reaction norms within populations. We have made considerable progress in understanding how pathogen stressors affect various early life-history traits in salmonid embryos. We have demonstrated that the effect of a particular stressor on heritable variation in these traits can vary according to the trait and species under consideration, in addition to the developmental stage of the host. Moreover, we found evidence of genetic variability in some, but not all reaction norms in whitefish and brown trout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of a calling and career development are assumed to be closely related. However, the nature of and reason for this relationship have not been thoroughly investigated. We hypothesized the existence of reciprocal effects between calling and three dimensions of career preparation and assessed the change of the presence of a calling, career planning, decidedness, and self-efficacy with three waves of a diverse sample of German university students (N = 846) over one year. Latent growth analyses revealed that the intercepts of calling showed a significant positive correlation with the intercepts of all career preparation measures. The slope of calling was positively related to those of decidedness and self-efficacy but not to planning. Cross-lagged analyses showed that calling predicted a subsequent increase in planning and self-efficacy. Planning and decidedness predicted an increase in the presence of a calling. The results suggest that calling and career preparation are related due to mutual effects but that effects differ for different career preparation dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.