901 resultados para deformable mirror


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human “mirror neuron system” that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke “mirror activity” in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional “mirror activity” in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of “mirror neuron activity” in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus–response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A travelling-wave model of a semiconductor optical amplifier based non-linear loop mirror is developed to investigate the importance of travelling-wave effects and gain/phase dynamics in predicting device behaviour. A constant effective carrier recovery lifetime approximation is found to be reasonably accurate (±10%) within a wide range of control pulse energies. Based on this approximation, a heuristic model is developed for maximum computational efficiency. The models are applied to a particular configuration involving feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar energy is the most abundant, widely distributed and clean renewable energy resource. Since the insolation intensity is only in the range of 0.5 - 1.0 kW/m2, solar concentrators are required for attaining temperatures appropriate for medium and high temperature applications. The concentrated energy is transferred through an absorber to a thermal fluid such as air, water or other fluids for various uses. This paper describes design and development of a 'Linear Fresnel Mirror Solar Concentrator' (LFMSC) using long thin strips of mirrors to focus sunlight on to a fixed receiver located at a common focal line. Our LFMSC system comprises a reflector (concentrator), receiver (target) and an innovative solar tracking mechanism. Reflectors are mirror strips, mounted on tubes which are fixed to a base frame. The tubes can be rotated to align the strips to focus solar radiation on the receiver (target). The latter comprises a coated tube carrying water and covered by a glass plate. This is mounted at an elevation of few meters above the horizontal, parallel to the plane of the mirrors. The reflector is oriented along north-south axis. The most difficult task is tracking. This is achieved by single axis tracking using a four bar link mechanism. Thus tracking has been made simple and easy to operate. The LFMSC setup is used for generating steam for a variety of applications. © 2013 The Authors. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psychologists have studied self-recognition in human infants as an indication of self-knowledge (Amsterdam, 1972) and the development of abstract thought processes. Gallup (1970) modified the mark test used in human infant work to examine if nonhuman primates showed similar evidence of mirror self-recognition. Chimpanzees (Pan troglodytes) and orangutans (Pongo pygmnaeus) pass the mirror self-recognition test with limited mirror training or exposure. Other species of primates, such as gorillas and monkeys, have not passed the mirror test, despite extensive mirror exposure and training (Gallup, 1979). This project examined a gorilla (G. gorilla gorilla) named Otto in the traditional mark test. Using the modified mark-test, there were more incidents of touching the marked area while Otto was in front of the mirror than when he was not in front of the mirror. These results indicated that Otto was able to show some evidence of selfawareness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Credit must be given to Freda Leinwand from Monkmeyer Press Photo Service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The model of Reshaping and Re-amplification (2R) regenerator based on High Nonlinear Dispersion Imbalanced Loop Mirror (HN-DILM) has been designed to examine its capability to reduce the necessary of fiber loop length and input peak power by deploying High Non linear Fiber (HNLF) compared to Dispersion Shifted Fiber (DSF). The simulation results show by deployed a HNLF as a nonlinear element in Dispersion Imbalanced Loop Mirror (DILM) requires only 400mW peak powers to obtain a peak of transmission compared to DSF which requires a higher peak power at 2000mW to obtain a certain transmissivity. It also shows that HNLF required shorter fiber length to achieve the highest transmission. The 2R regenerator also increases the extinction ratio (ER) of the entire system. © 2010 IEEE.