883 resultados para decision support tool


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water resources management, as also water service provision projects in developing countries have difficulties to take adequate decisions due to scarce reliable information, and a lack of proper information managing. Some appropriate tools need to be developed in order to improve decision making to improve water management and access of the poorest, through the design of Decision Support Systems (DSS). On the one side, a DSS for developing co-operation projects on water access improvement has been developed. Such a tool has specific context constrains (structure of the system, software requirements) and needs (Logical Framework Approach monitoring, organizational-learning, accountability and evaluation) that shall be considered for its design. Key aspects for its successful implementation have appeared to be a participatory design of the system and support of the managerial positions at the inception phase. A case study in Tanzania was conducted, together with the Spanish NGO ONGAWA – Ingeniería para el Desarrollo. On the other side, DSS are required also to improve decision making on water management resources in order to achieve a sustainable development that not only improves the living conditions of the population in developing countries, but that also does not hinder opportunities of the poorest on those context. A DSS made to fulfil these requirements shall be using information from water resources modelling, as also on the environment and the social context. Through the research, a case study has been conducted in the Central Rift Valley of Ethiopia, an endhorreic basin 160 km south of Addis Ababa. There, water has been modelled using ArcSWAT, a physically based model which can assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time. Moreover, governance on water and environment as also the socioeconomic context have been studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE. The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. MATERIALS AND METHODS. Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. RESULTS. Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. CONCLUSIONS. The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Breast cancer survivors suffer physical impairment after oncology treatment. This impairment reduces quality of life (QoL) and increase the prevalence of handicaps associated to unhealthy lifestyle (for example, decreased aerobic capacity and strength, weight gain, and fatigue). Recent work has shown that exercise adapted to individual characteristics of patients is related to improved overall and disease-free survival. Nowadays, technological support using telerehabilitation systems is a promising strategy with great advantage of a quick and efficient contact with the health professional. It is not known the role of telerehabilitation through therapeutic exercise as a support tool to implement an active lifestyle which has been shown as an effective resource to improve fitness and reduce musculoskeletal disorders of these women. METHODS / DESIGN This study will use a two-arm, assessor blinded, parallel randomized controlled trial design. People will be eligible if: their diagnosis is of stages I, II, or IIIA breast cancer; they are without chronic disease or orthopedic issues that would interfere with ability to participate in a physical activity program; they had access to the Internet and basic knowledge of computer use or living with a relative who has this knowledge; they had completed adjuvant therapy except for hormone therapy and not have a history of cancer recurrence; and they have an interest in improving lifestyle. Participants will be randomized into e-CUIDATE or usual care groups. E-CUIDATE give participants access to a range of contents: planning exercise arranged in series with breathing exercises, mobility, strength, and stretching. All of these exercises will be assigned to women in the telerehabilitation group according to perceived needs. The control group will be asked to maintain their usual routine. Study endpoints will be assessed after 8 weeks (immediate effects) and after 6 months. The primary outcome will be QoL measured by The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 version 3.0 and breast module called The European Organization for Research and Treatment of Cancer Breast Cancer-Specific Quality of Life questionnaire. The secondary outcomes: pain (algometry, Visual Analogue Scale, Brief Pain Inventory short form); body composition; physical measurement (abdominal test, handgrip strength, back muscle strength, and multiple sit-to-stand test); cardiorespiratory fitness (International Fitness Scale, 6-minute walk test, International Physical Activity Questionnaire-Short Form); fatigue (Piper Fatigue Scale and Borg Fatigue Scale); anxiety and depression (Hospital Anxiety and Depression Scale); cognitive function (Trail Making Test and Auditory Consonant Trigram); accelerometry; lymphedema; and anthropometric perimeters. DISCUSSION This study investigates the feasibility and effectiveness of a telerehabilitation system during adjuvant treatment of patients with breast cancer. If this treatment option is effective, telehealth systems could offer a choice of supportive care to cancer patients during the survivorship phase. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01801527.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of the economic evaluation of health care interventions has become a support tool in making decisions on pricing and reimbursement of new health interventions. The increasingly extensive application of these techniques has led to the identification of particular situations in which, for various reasons, it may be reasonable to take into account special considerations when applying the general principles of economic evaluation. In this article, which closes a series of three, we will discuss, using the Metaplan technique, about the economic evaluation of health interventions in special situations such as rare diseases and end of life treatments, as well as consideration of externalities in assessments, finally pointing out some research areas to solve the main problems identified in these fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Physicians need a specific risk-stratification tool to facilitate safe and cost-effective approaches to the management of patients with cancer and acute pulmonary embolism (PE). The objective of this study was to develop a simple risk score for predicting 30-day mortality in patients with PE and cancer by using measures readily obtained at the time of PE diagnosis. METHODS: Investigators randomly allocated 1,556 consecutive patients with cancer and acute PE from the international multicenter Registro Informatizado de la Enfermedad TromboEmbólica to derivation (67%) and internal validation (33%) samples. The external validation cohort for this study consisted of 261 patients with cancer and acute PE. Investigators compared 30-day all-cause mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. RESULTS: In the derivation sample, multivariable analyses produced the risk score, which contained six variables: age > 80 years, heart rate ≥ 110/min, systolic BP < 100 mm Hg, body weight < 60 kg, recent immobility, and presence of metastases. In the internal validation cohort (n = 508), the 22.2% of patients (113 of 508) classified as low risk by the prognostic model had a 30-day mortality of 4.4% (95% CI, 0.6%-8.2%) compared with 29.9% (95% CI, 25.4%-34.4%) in the high-risk group. In the external validation cohort, the 18% of patients (47 of 261) classified as low risk by the prognostic model had a 30-day mortality of 0%, compared with 19.6% (95% CI, 14.3%-25.0%) in the high-risk group. CONCLUSIONS: The developed clinical prediction rule accurately identifies low-risk patients with cancer and acute PE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Blood doping (BD) is the use of Erythropoietic Stimulating Agents (ESAs) and/or transfusion to increase aerobic performance in athletes. Direct toxicologic techniques are insufficient to unmask sophisticated doping protocols. The Hematological module of the ABP (World Anti-Doping Agency), associates decision support technology and expert assessment to indirectly detect BD hematological effects. Methods: The ABP module is based on blood parameters, under strict pre-analytical and analytical rules for collection, storage and transport at 2-12°C, internal and external QC. Accuracy, reproducibility and interlaboratory harmonization fulfill forensic standard. Blood samples are collected in competition and out-ofcompetition. Primary parameters for longitudinal monitoring are: - hemoglobin (HGB); - reticulocyte percentage (RET); - OFF score, indicator of suppressed erythropoiesis, calculated as [HGB(g/L) * 60-√RET%]. Statistical calculation predicts individual expected limits by probabilistic inference. Secondary parameters are RBC, HCT, MCHC-MCH-MCV-RDW-IFR. ABP profiles flagged as atypical are review by experts in hematology, pharmacology, sports medicine or physiology, and classified as: - normal - suspect (to target) - likely due to BD - likely due to pathology. Results: Thousands of athletes worldwide are currently monitored. Since 2010, at least 35 athletes have been sanctioned and others are prosecuted on the sole basis of abnormal ABP, with a 240% increase of positivity to direct tests for ESA, thanks to improved targeting of suspicious athletes (WADA data). Specific doping scenarios have been identified by the Experts (Table and Figure). Figure. Typical HGB and RET profiles in two highly suspicious athletes. A. Sample 2: simultaneous increases in HGB and RET (likely ESA stimulation) in a male. B. Samples 3, 6 and 7: "OFF" picture, with high HGB and low RET in a female. Sample 10: normal HGB and increased RET (ESA or blood withdrawal). Conclusions: ABP is a powerful tool for indirect doping detection, based on the recognition of specific, unphysiological changes triggered by blood doping. The effect of factors of heterogeneity, such as sex and altitude, must also be considered. Schumacher YO, et al. Drug Test Anal 2012, 4:846-853. Sottas PE, et al. Clin Chem 2011, 57:969-976.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: A clinical decision rule to improve the accuracy of a diagnosis of influenza could help clinicians avoid unnecessary use of diagnostic tests and treatments. Our objective was to develop and validate a simple clinical decision rule for diagnosis of influenza. METHODS: We combined data from 2 studies of influenza diagnosis in adult outpatients with suspected influenza: one set in California and one in Switzerland. Patients in both studies underwent a structured history and physical examination and had a reference standard test for influenza (polymerase chain reaction or culture). We randomly divided the dataset into derivation and validation groups and then evaluated simple heuristics and decision rules from previous studies and 3 rules based on our own multivariate analysis. Cutpoints for stratification of risk groups in each model were determined using the derivation group before evaluating them in the validation group. For each decision rule, the positive predictive value and likelihood ratio for influenza in low-, moderate-, and high-risk groups, and the percentage of patients allocated to each risk group, were reported. RESULTS: The simple heuristics (fever and cough; fever, cough, and acute onset) were helpful when positive but not when negative. The most useful and accurate clinical rule assigned 2 points for fever plus cough, 2 points for myalgias, and 1 point each for duration <48 hours and chills or sweats. The risk of influenza was 8% for 0 to 2 points, 30% for 3 points, and 59% for 4 to 6 points; the rule performed similarly in derivation and validation groups. Approximately two-thirds of patients fell into the low- or high-risk group and would not require further diagnostic testing. CONCLUSION: A simple, valid clinical rule can be used to guide point-of-care testing and empiric therapy for patients with suspected influenza.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Switzerland there is a strong movement at a national policy level towards strengthening patient rights and patient involvement in health care decisions. Yet, there is no national programme promoting shared decision making. First decision support tools (prenatal diagnosis and screening) for the counselling process have been developed and implemented. Although Swiss doctors acknowledge that shared decision making is important, hierarchical structures and asymmetric physician-patient relationships are still prevailing. The last years have seen some promising activities regarding the training of medical students and the development of patient support programmes. Swiss direct democracy and the habit of consensual decision making and citizen involvement in general may provide a fertile ground for SDM development in the primary care setting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strategic management is based upon a performance measurement system that allows gearing decision making towards accomplishing the established objectives.In a changing economic situation, the measurement of the effects of tourism is fundamental in order to know the efficiency and sustainability of that industry and of the territory in which takes place its activity. We propose a performance measurement system for the sustainable management of a tourism destination, so it will support the adoption of public policies and their follow-up, and as an instrument that will promote the responsible participation of the stakeholders with stakes in the destination. In accordance with the guidelines of the Agenda for a sustainable and competitive European tourism, we design a system based on the identification of the axes over which hinges the success of the management of tourism destinations, taking into account the long-term sustainability of this activity. We position the performance measurement system, and especially the balanced scorecard, as a support tool for the strategic planning of destinations. To the extent that this is possible, the performance measures are selected and structured according to the patterns of the balanced scorecard. Finally, we apply the conceptual model to the central Costa Brava

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The decision-making process regarding drug dose, regularly used in everyday medical practice, is critical to patients' health and recovery. It is a challenging process, especially for a drug with narrow therapeutic ranges, in which a medical doctor decides the quantity (dose amount) and frequency (dose interval) on the basis of a set of available patient features and doctor's clinical experience (a priori adaptation). Computer support in drug dose administration makes the prescription procedure faster, more accurate, objective, and less expensive, with a tendency to reduce the number of invasive procedures. This paper presents an advanced integrated Drug Administration Decision Support System (DADSS) to help clinicians/patients with the dose computing. Based on a support vector machine (SVM) algorithm, enhanced with the random sample consensus technique, this system is able to predict the drug concentration values and computes the ideal dose amount and dose interval for a new patient. With an extension to combine the SVM method and the explicit analytical model, the advanced integrated DADSS system is able to compute drug concentration-to-time curves for a patient under different conditions. A feedback loop is enabled to update the curve with a new measured concentration value to make it more personalized (a posteriori adaptation).