868 resultados para damage evolution process
Resumo:
The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.
Resumo:
This paper reports on two-dimensional numerical simulation of cellular detonation wave in a / / mixture with low initial pressure using a detailed chemical reaction model and high order WENO scheme. Before the final equilibrium structure is produced, a fairly regular but still non-equilibrium mode is observed during the early stage of structure formation process. The numerically tracked detonation cells show that the cell size always adapts to the channel height such that the cell ratio is fairly independent of the grid sizes and initial and boundary conditions. During the structural evolution in a detonation cell, even as the simulated detonation wave characteristics suggest the presence of an ordinary detonation, the evolving instantaneous detonation state indicates a mainly underdriven state. As a considerable region of the gas mixture in a cell is observed to be ignited by the incident wave and transverse wave, it is further suggested that these two said waves play an essential role in the detonation propagation.
Resumo:
An elastoplastic constitutive relation is developed for meso damage of whisker-reinforced composites. A model is constructed that includes orientation distribution of whiskers and slip systems as well as interface and crystal sliding. Evolution of damage will be addressed. Given in Part I is the formulation while examples will be illustrated in Part II.
Resumo:
The transition process of the thermocapillary convection from a steady and axisymmetric mode to the oscillatory mode in a liquid bridge with a fixed aspect ratio and varied volume ratio was studied experimentally. To ensure the surface tension to play an important role in the ground-based experiment, the geometrical configuration of the liquid bridge was so designed that the associated dynamic Bond number Bd ≈ 1. The velocity fields were measured by Particle Image Velocimetry (PIV) technique to effectively distinguish the different flow modes during the transition period in the experiments. Our experiments showed that as the temperature difference increased the slender and fat bridges presented quite different features on the evolution in their flow feature: for the former the thermocapillary convection transformed from a steady and axisymmetric pattern directly into an oscillatory one; but for the latter a transition flow status, characterized by an axial asymmetric steady convection, appeared before reaching the oscillatory mode. Experimental observations agree with the results of numerical simulations and it is obvious that the volume of liquid bridge is a sensitive geometric parameter. In addition, at the initial stage of the oscillation, for the former a rotating oscillatory convection with azimuthal wave number m = 1 was observed while for the latter a pulsating oscillatory pattern with azimuthal wave number m = 2 emerged, and then with further increase of the temperature difference, the pulsating oscillatory convection with azimuthal wave number m = 2 evolved into a rotating oscillatory pattern with azimuthal wave number m = 2.
Resumo:
A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense tha
Resumo:
In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).
Resumo:
Both earthquake prediction and failure prediction of disordered brittle media are difficult and complicated problems and they might have something in common. In order to search for clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model resembling disordered brittle media are examined. It is found that the failure manifests evolution-induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-specificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar to the question of predictability of earthquakes. However, our model shows that strong stress fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues for earthquake forecasting.
Resumo:
This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.
Resumo:
Development of shear bands in saturated soils is a multi-stage process based on the theoretical and numerical investigations in this paper. The soil is initially in homogenous shear strain state, and the instability can be characterized by a dimensionless number D. The inhomogenous distribution of shear strains appears when D>1, and the shear band will initiate and develop gradually. Numerical solutions show that only single shear band that is finally formed in the central region of the specimen even several disturbances (distributed along the specimen) appear in the beginning.
Resumo:
The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.
Resumo:
This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.
Resumo:
Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.
Resumo:
Pure liquid - liquid diffusion driven by concentration gradients is hard to study in a normal gravity environment since convection and sedimentation also contribute to the mass transfer process. We employ a Mach - Zehnder interferometer to monitor the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the Satellite Shi Jian No 8. A series of the evolution charts of mass distribution during the diffusion process of the liquid droplet are presented and the relevant diffusion coefficient is determined.