874 resultados para correlation-based feature selection
Resumo:
Antisocial and criminal behaviors are multifactorial traits whose interpretation relies on multiple disciplines. Since these interpretations may have social, moral and legal implications, a constant review of the evidence is necessary before any scientific claim is considered as truth. A recent study proposed that men with wider faces relative to facial height (fWHR) are more likely to develop unethical behaviour mediated by a psychological sense of power. This research was based on reports suggesting that sexual dimorphism and selection would be responsible for a correlation between fWHR and aggression. Here we show that 4,960 individuals from 94 modern human populations belonging to a vast array of genetic and cultural contexts do not display significant amounts of fWHR sexual dimorphism. Further analyses using populations with associated ethnographical records as well as samples of male prisoners of the Mexico City Federal Penitentiary condemned by crimes of variable level of inter-personal aggression (homicide, robbery, and minor faults) did not show significant evidence, suggesting that populations/individuals with higher levels of bellicosity, aggressive behaviour, or power-mediated behaviour display greater fWHR. Finally, a regression analysis of fWHR on individual"s fitness showed no significant correlation between this facial trait and reproductive success. Overall, our results suggest that facial attributes are poor predictors of aggressive behaviour, or at least, that sexual selection was weak enough to leave a signal on patterns of between- and within-sex and population facial variation.
Resumo:
We manipulate distributive justice rules of demographic quotas in university selection. Results show that quotas involving students' need are preferred over equity and authority ranking quotas. International students also differentiate more between quotas than locals, preferring those advantaging them. This suggests that universities should consider students' need in their selection.
Resumo:
The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/ nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.
Resumo:
Understanding the basis on which recruiters form hirability impressions for a job applicant is a key issue in organizational psychology and can be addressed as a social computing problem. We approach the problem from a face-to-face, nonverbal perspective where behavioral feature extraction and inference are automated. This paper presents a computational framework for the automatic prediction of hirability. To this end, we collected an audio-visual dataset of real job interviews where candidates were applying for a marketing job. We automatically extracted audio and visual behavioral cues related to both the applicant and the interviewer. We then evaluated several regression methods for the prediction of hirability scores and showed the feasibility of conducting such a task, with ridge regression explaining 36.2% of the variance. Feature groups were analyzed, and two main groups of behavioral cues were predictive of hirability: applicant audio features and interviewer visual cues, showing the predictive validity of cues related not only to the applicant, but also to the interviewer. As a last step, we analyzed the predictive validity of psychometric questionnaires often used in the personnel selection process, and found that these questionnaires were unable to predict hirability, suggesting that hirability impressions were formed based on the interaction during the interview rather than on questionnaire data.
Resumo:
Building on the instrumental model of group conflict (IMGC), the present experiment investigates the support for discriminatory and meritocratic method of selections at university in a sample of local and immigrant students. Results showed that local students were supporting in a larger proportion selection method that favors them over immigrants in comparison to method that consists in selecting the best applicants without considering his/her origin. Supporting the assumption of the IMGC, this effect was stronger for locals who perceived immigrants as competing for resources. Immigrant students supported more strongly the meritocratic selection method than the one that discriminated them. However, contrasting with the assumption of the IMGC, this effect was only present in students who perceived immigrants as weakly competing for locals' resources. Results demonstrate that selection methods used at university can be perceived differently depending on students' origin. Further, they suggest that the mechanisms underlying the perception of discriminatory and meritocratic selection methods differ between local and immigrant students. Hence, the present experiment makes a theoretical contribution to the IMGC by delimiting its assumptions to the ingroup facing a competitive situation with a relevant outgroup. Practical implication for universities recruitment policies are discussed.
Resumo:
Peer-reviewed
Resumo:
This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification