948 resultados para coralline algae
Resumo:
Mode of access: Internet.
Resumo:
"Held ... under the sponsorship of the Division of Water Supply and Pollution Control and the Robert A. Taft Sanitary Engineering Center."
Resumo:
Includes bibliographical references and index
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Issued Mar. 1976.
Resumo:
"Translation of an article ... in ... Uspekhi sovremennoy biologii ... vol. 56, no.1(4) ... (1963."
Resumo:
Mode of access: Internet.
Resumo:
"In cooperation with National Botanic Gardens Lucknow, India."
Resumo:
Published also as Smithsonian contributions to knowledge: v.III, art. 4; v. V, art t; v. X [art. 2]
Resumo:
High-resolution Sr/Ca ratios of two Porites corals from Leizhou Peninsula were measured using inductively coupled plasma atomic spectrometry (ICP-AES). TIMS U-Th dating reveals that the life-spans of the two corals are 489500 AD and 539-530 BC, respectively. Monthly sea surface temperatures (SSTs) during these two periods can be reconstructed from their skeletal Sr/Ca ratios. The results reveal that SSTs during 539-530 BC were roughly the same as those during 1990-2000 AD in this area, indicating a relative warm climate period. However, the period of 489-500 AD was significantly cooler, with annual mean SST, the 10-a average of minimum monthly winter SSTs and the 10-a average of maximum monthly summer SSTs being about 2, 2.9 and 1degreesC lower than that in the 1990s, respectively. Such climate patterns agree well with the phenological results recorded in the historic documents in other areas of China.
Resumo:
The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.