953 resultados para constitutive metabolites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor (FGF) receptor family. Utilizing the FRET (fluorescence resonance energy transfer) technique, we demonstrate that FGFRL1 forms constitutive homodimers at cell surfaces. The formation of homodimers was verified by co-precipitation of differentially tagged FGFRL1 polypeptides from solution. If overexpressed in cultivated cells, FGFRL1 was found to be enriched at cell-cell contact sites. The extracellular domain of recombinant FGFRL1 promoted cell adhesion, but not cell spreading, when coated on plastic surfaces. Adhesion was mediated by heparan sulfate glycosaminoglycans located at the cell surface. It could specifically be blocked by addition of soluble heparin but not by addition of other glycosaminoglycans. When the amino acid sequence of the putative heparin-binding site was modified by in vitro mutagenesis, the resulting protein exhibited decreased affinity for heparin and reduced activity in the cell-binding assay. Moreover, a synthetic peptide corresponding to the heparin-binding site was able to neutralize the effect of heparin. With its dimeric structure and its adhesion promoting properties, FGFRL1 resembles the nectins, a family of cell adhesion molecules found at cell-cell junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav  = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav  = 0.41 × 10(-3)  s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav  = 0.48 × 10(-3)  s/mm(2) , FA = 0.34), carnosine (ADCav  = 0.46 × 10(-3)  s/mm(2) , FA = 0.47), and water (ADCav  = 1.5 × 10(-3)  s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to self reports and questionnaires, biomarkers are of relevance in the diagnosis of and therapy for alcohol use disorders. Traditional biomarkers such as gamma-glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to the influence of age, gender and non-alcohol related diseases, among others. Direct metabolites of ethanol such as Ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake - EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programmes, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and foetal alcohol syndrome. Due to their properties, they open up new perspectives for prevention, interdisciplinary cooperation, diagnosis of and therapy for alcohol-related problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol and tobacco related disorders are the two leading and most expensive causes of illness in central Europe. In addition to self reports and questionnaires, biomarkers are of relevance in diagnosis and therapy of alcohol use disorders.Traditional biomarkers such as gamma glutamyl transpeptidase or mean corpuscualr volume are indirect biomarkers and are subject to influence of age, gender and non alcohol related diseases, among others.Direct ethanol metabolites such as ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake-EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programs, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and fetal alcohol syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study, we examined BLYS gene expression, function, and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells, including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL), playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors, NF-kappaB and NFAT, are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries, yet its pathophysiology is incompletely understood. Small-molecule metabolite screens may offer new insights into disease mechanisms and reveal new treatment targets. Methods Discovery (N = 33) and replication (N = 66) of liver biopsies spanning the range from normal liver histology to non-alcoholic steatohepatitis (NASH) were ascertained ensuring rapid freezing under 30 s in patients. 252 metabolites were assessed using GC/MS. Replicated metabolites were evaluated in a murine high-fat diet model of NAFLD. Results In a two-stage metabolic screening, hydroquinone (HQ, pcombined = 3.0 × 10−4) and nicotinic acid (NA, pcombined = 3.9 × 10−9) were inversely correlated with histological NAFLD severity. A murine high-fat diet model of NAFLD demonstrated a protective effect of these two substances against NAFLD: Supplementation with 1% HQ reduced only liver steatosis, whereas 0.6% NA reduced both liver fat content and serum transaminase levels and induced a complex regulatory network of genes linked to NALFD pathogenesis in a global expression pathway analysis. Human nutritional intake of NA equivalent was also consistent with a protective effect of NA against NASH progression. Conclusion This first small-molecular screen of human liver tissue identified two replicated protective metabolites. Either the use of NA or targeting its regulatory pathways might be explored to treat or prevent human NAFLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.