909 resultados para computer-mediated communications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased accessibility to high-performance computing resources has created a demand for user support through performance evaluation tools like the iSPD (iconic Simulator for Parallel and Distributed systems), a simulator based on iconic modelling for distributed environments such as computer grids. It was developed to make it easier for general users to create their grid models, including allocation and scheduling algorithms. This paper describes how schedulers are managed by iSPD and how users can easily adopt the scheduling policy that improves the system being simulated. A thorough description of iSPD is given, detailing its scheduler manager. Some comparisons between iSPD and Simgrid simulations, including runs of the simulated environment in a real cluster, are also presented. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wird eine detaillierte Untersuchung und Charakterisierung der Zwei-Photonen-induzierten Fluoreszenzverstärkung von organischen Farbstoffen auf plasmonischen Nanostrukturen vorgestellt. Diese Fluoreszenzverstärkung ist insbesondere für hochaufgelöste Fluoreszenzmikroskopie und Einzelmolekülspektroskopie von großer Bedeutung. Durch die Zwei-Photonen-Anregung resultiert eine Begrenzung des Absorptionsprozesses auf das fokale Volumen. In Kombination mit dem elektrischen Nahfeld der Nanostrukturen als Anregungsquelle entsteht eine noch stärkere Verringerung des Anregungsvolumens auf eine Größe unterhalb der Beugungsgrenze. Dies erlaubt die selektive Messung ausgewählter Farbstoffe. Durch die Herstellung der Nanopartikel mittels Kolloidlithografie wird eine definierte, reproduzierbare Geometrie erhalten. Polymermultischichten dienen als Abstandshalter, um die Farbstoffe an einer exakten Distanz zum Metall zu positionieren. Durch die kovalente Anbindung des Farbstoffs an die oberste Schicht wird eine gleichmäßige Verteilung des Farbstoffs in geringer Konzentration erhalten. rnEs wird eine Verstärkung der Fluoreszenz um den Faktor 30 für Farbstoffe auf Goldellipsen detektiert, verglichen mit Farbstoffen außerhalb des Nahfelds. Sichelförmige Nanostrukturen erzeugen eine Verstärkung von 120. Dies belegt, dass das Ausmaß der Fluoreszenzverstärkung entscheidend von der Stärke des elektrischen Nahfelds der Nanostruktur abhängt. Auch das Material der Nanostruktur ist hierbei von Bedeutung. So erzeugen Silberellipsen eine 1,5-fach höhere Fluoreszenzverstärkung als identische Goldellipsen. Distanzabhängige Fluoreszenzmessungen zeigen, dass die Zwei-Photonen-angeregte Fluoreszenzverstärkung an strukturspezifischen Abständen zum Metall maximiert wird. Elliptische Strukturen zeigen ein Maximum bei einem Abstand von 8 nm zum Metall, wohingegen bei sichelförmigen Nanostrukturen die höchste Fluoreszenzintensität bei 12 nm gemessen wird. Bei kleineren Abständen unterliegt der Farbstoff einem starken Löschprozess, sogenanntes Quenching. Dieses konkurriert mit dem Verstärkungsprozess, wodurch es zu einer geringen Nettoverstärkung kommt. Hat die untersuchte Struktur Dimensionen größer als das Auflösungsvermögen des Mikroskops, ist eine direkte Visualisierung des elektrischen Nahfelds der Nanostruktur möglich. rnrnEin weiterer Fokus dieser Arbeit lag auf der Herstellung neuartiger Nanostrukturen durch kolloidlithografische Methoden. Gestapelte Dimere sichelförmiger Nanostrukturen mit exakter vertikaler Ausrichtung und einem Separationsabstand von etwa 10 nm wurden hergestellt. Die räumliche Nähe der beiden Strukturen führt zu einem Kopplungsprozess, der neue optische Resonanzen hervorruft. Diese können als Superpositionen der Plasmonenmoden der einzelnen Sicheln beschrieben werden. Ein Hybridisierungsmodell wird angewandt, um die spektralen Unterschiede zu erklären. Computersimulationen belegen die zugrunde liegende Theorie und erweitern das Modell um experimentell nicht aufgelöste Resonanzen. rnWeiterhin wird ein neuer Herstellungsprozess für sichelförmige Nanostrukturen vorgestellt, der eine präzise Formanpassung ermöglicht. Hierdurch kann die Lage der Plasmonenresonanz exakt justiert werden. Korrelationen der geometrischen Daten mit den Resonanzwellenlängen tragen zum grundlegenden Verständnis der Plasmonenresonanzen bei. Die vorgestellten Resultate wurden mittels Computersimulationen verifiziert. Der Fabrikationsprozess erlaubt die Herstellung von Dimeren sichelförmiger Nanostrukturen in einer Ebene. Durch die räumliche Nähe überlappen die elektrischen Nahfelder, wodurch es zu kopplungs-induzierten Shifts der Plasmonenresonanzen kommt. Der Unterschied zu theoretisch berechneten ungekoppelten Nanosicheln kann auch bei den gegenüberliegenden sichelförmigen Nanostrukturen mit Hilfe des Plasmonenhybridisierungsmodells erklärt werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report reviews the technology of Free-space Optical Communication (FSO) and simulation methods for testing the performance of diverged beam in the technology. In addition to the introduction, the theory of turbulence and its effect over laser is also reviewed. In the simulation revision chapter, on-off keying (OOK) and diverged beam is assumed in the transmitter, and in the receiver, avalanche photodiode (APD) is utilized to convert the photon stream into electron stream. Phase screens are adopted to simulate the effect of turbulence over the phase of the optical beam. Apart from this, the method of data processing is introduced and retrospected. In the summary chapter, there is a general explanation of different beam divergence and their performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this correspondence, the conditions to use any kind of discrete cosine transform (DCT) for multicarrier data transmission are derived. The symmetric convolution-multiplication property of each DCT implies that when symmetric convolution is performed in the time domain, an element-by-element multiplication is performed in the corresponding discrete trigonometric domain. Therefore, appending symmetric redun-dancy (as prefix and suffix) into each data symbol to be transmitted, and also enforcing symmetry for the equivalent channel impulse response, the linear convolution performed in the transmission channel becomes a symmetric convolution in those samples of interest. Furthermore, the channel equalization can be carried out by means of a bank of scalars in the corresponding discrete cosine transform domain. The expressions for obtaining the value of each scalar corresponding to these one-tap per subcarrier equalizers are presented. This study is completed with several computer simulations in mobile broadband wireless communication scenarios, considering the presence of carrier frequency offset (CFO). The obtained results indicate that the proposed systems outperform the standardized ones based on the DFT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) requires integrated "all in one" electronic devices capable of performing analysis of structural integrity and on-board damage detection in aircraft?s structures. PAMELA III (Phased Array Monitoring for Enhanced Life Assessment, version III) SHM embedded system is an example of this device type. This equipment is capable of generating excitation signals to be applied to an array of integrated piezoelectric Phased Array (PhA) transducers stuck to aircraft structure, acquiring the response signals, and carrying out the advanced signal processing to obtain SHM maps. PAMELA III is connected with a host computer in order to receive the configuration parameters and sending the obtained SHM maps, alarms and so on. This host can communicate with PAMELA III through an Ethernet interface. To avoid the use of wires where necessary, it is possible to add Wi-Fi capabilities to PAMELA III, connecting a Wi-Fi node working as a bridge, and to establish a wireless communication between PAMELA III and the host. However, in a real aircraft scenario, several PAMELA III devices must work together inside closed structures. In this situation, it is not possible for all PAMELA III devices to establish a wireless communication directly with the host, due to the signal attenuation caused by the different obstacles of the aircraft structure. To provide communication among all PAMELA III devices and the host, a wireless mesh network (WMN) system has been implemented inside a closed aluminum wingbox. In a WMN, as long as a node is connected to at least one other node, it will have full connectivity to the entire network because each mesh node forwards packets to other nodes in the network as required. Mesh protocols automatically determine the best route through the network and can dynamically reconfigure the network if a link drops out. The advantages and disadvantages on the use of a wireless mesh network system inside closed aerospace structures are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.