788 resultados para cluster sampling
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
Selostus: Mahdollisuus lyhytaikaisen virtsankeruun käyttöön lypsylehmien virtsan pseudouridiinin erityksen määrittämisessä
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
Summary
Resumo:
Summary
Resumo:
BACKGROUND: Blood sampling is a frequent medical procedure, very often considered as a stressful experience by children. Local anesthetics have been developed, but are expensive and not reimbursed by insurance companies in our country. We wanted to assess parents' willingness to pay (WTP) for this kind of drug. PATIENTS AND METHODS: Over 6 months, all parents of children presenting for general (GV) or specialized visit (SV) with blood sampling. WTP was assessed through three scenarios [avoiding blood sampling (ABS), using the drug on prescription (PD), or over the counter (OTC)], with a payment card system randomized to ascending or descending order of prices (AO or DO). RESULTS: Fifty-six responses were collected (34 GV, 22 SV, 27 AO and 29 DO), response rate 40%. Response distribution was wide, with median WTP of 40 for ABS, 25 for PD, 10 for OTC, which is close to the drug's real price. Responses were similar for GV and SV. Median WTP amounted to 0.71, 0.67, 0.20% of respondents' monthly income for the three scenarios, respectively, with a maximum at 10%. CONCLUSIONS: Assessing parents' WTP in an outpatient setting is difficult, with wide result distribution, but median WTP is close to the real drug price. This finding could be used to promote insurance coverage for this drug.
Resumo:
The spatial variability of soil and plant properties exerts great influence on the yeld of agricultural crops. This study analyzed the spatial variability of the fertility of a Humic Rhodic Hapludox with Arabic coffee, using principal component analysis, cluster analysis and geostatistics in combination. The experiment was carried out in an area under Coffea arabica L., variety Catucai 20/15 - 479. The soil was sampled at a depth 0.20 m, at 50 points of a sampling grid. The following chemical properties were determined: P, K+, Ca2+, Mg2+, Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, OM, Na saturation index (SSI), remaining phosphorus (P-rem), and micronutrients (Zn, Fe, Mn, Cu and B). The data were analyzed with descriptive statistics, followed by principal component and cluster analyses. Geostatistics were used to check and quantify the degree of spatial dependence of properties, represented by principal components. The principal component analysis allowed a dimensional reduction of the problem, providing interpretable components, with little information loss. Despite the characteristic information loss of principal component analysis, the combination of this technique with geostatistical analysis was efficient for the quantification and determination of the structure of spatial dependence of soil fertility. In general, the availability of soil mineral nutrients was low and the levels of acidity and exchangeable Al were high.
Resumo:
The correct use of closed field chambers to determine N2O emissions requires defining the time of day that best represents the daily mean N2O flux. A short-term field experiment was carried out on a Mollisol soil, on which annual crops were grown under no-till management in the Pampa Ondulada of Argentina. The N2O emission rates were measured every 3 h for three consecutive days. Fluxes ranged from 62.58 to 145.99 ∝g N-N2O m-2 h-1 (average of five field chambers) and were negatively related (R² = 0.34, p < 0.01) to topsoil temperature (14 - 20 ºC). N2O emission rates measured between 9:00 and 12:00 am presented a high relationship to daily mean N2O flux (R² = 0.87, p < 0.01), showing that, in the study region, sampling in the mornings is preferable for GHG.
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.