638 resultados para chlorhexidine baths
Resumo:
Objective: To analyze the effects of thermal cycling on the microtensile shear bond strength of a self-etching and a conventional pit and fissure sealants to dental enamel. Material and Method: Twenty-four healthy human molars extracted for orthodontic reasons, were sectioned in the mesio-distal direction and divided into two groups (n=24) according to the sealant to be applied: GI - conventional sealant Climpro (3M/ESPE) and GII - self-etching sealant Enamel Loc (Premier Dental). The sealants were applied on flattened enamel in matrixes 1 mm in diameter, in accordance with the manufacturers' recommendations. The specimens were stored in distilled water at 37°C for 24 hours. After this, half the samples of both groups were submitted to 500 thermal cycles in 30s baths at temperatures between 5 and 55°C. Forty-eight hours after the samples were made, the microtensile shear test was performed in an Instron 4411 test machine, with a stainless steel wire with a cylindrical cross section of 0.2mm in diameter at a constant speed of 0.5mm/s. The bond strength values were submitted to ANOVA for 2 factors and the fracture patterns were examined under an optical microscope at 65X magnification. Results: Thermal cycling did not influence the bond strength of the two sealants. The conventional sealant Climpro presented a statistically higher microtensile shear bond strength (11.72MPa, 11.34MPa with and without cycling, respectively) than the self-etching sealant Enamel Loc (5.92MPa, 5.02MPa with and without cycling, respectively). Fracture pattern analysis showed the occurrence of 100% of adhesive failures for Enamel Loc, while the conventional sealant Climpro presented 95% of adhesive failures and 5% of mixed failures. Conclusion: The conventional sealant presented higher microtensile shear bond strength to dental enamel in comparison with the self-etching sealant. Thermal cycling did not affect the bond strength of the sealants used in this study. © 2011 Nova Science Publishers, Inc.
Resumo:
Objectives: The purpose of this study was to investigate the effect of thermal cycling and disinfection on the colour change of denture base acrylic resin. Materials and Methods: Four different brands of acrylic resins were evaluated (Onda Cryl, QC 20, Classico and Lucitone). All brands were divided into four groups (n=7) determined according to the disinfection procedure (microwave, Efferdent, 4% chlorhexidine or 1% hypochlorite). The treatments were conducted three times a week for 60days. All specimens were thermal cycled between 5 and 55°C with 30-s dwell times for 1000 cycles before and after disinfection. The specimens' colour was measured with a spectrophotometer using the CIE L*a*b* system. The evaluations were conducted at baseline (B), after first thermal cycling (T 1), after disinfection (D) and after second thermal cycling (T 2). Colour differences (ΔE) were calculated between T 1 and B (T 1B), D and B (DB), and T 2 and B (T 2B) time-points. Results: The samples submitted to disinfection by microwave and Efferdent exhibited the highest values of colour change. There were significant differences on colour change between the time-points, except for the Lucitone acrylic resin. Conclusions: The thermal cycling and disinfection procedures significantly affected the colour stability of the samples. However, all values obtained for the acrylic resins are within acceptable clinical parameters. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
Making an artificial iris with an aesthetically acceptable color is an important aspect of ocular rehabilitation. This work evaluated the influence of different disinfecting solutions on changes to the color of artificial irises used in ocular prostheses. Fifty samples simulating ocular prostheses were produced with cobalt blue artificial irises and divided (n = 10) according to the disinfectant used: neutral soap, Opti-free, Efferdent, 1% hypochlorite, and 4% chlorhexidine. The samples were disinfected for 120 days and subjected to a color readings by spectrophotometry, using the CIE L*a*b* system, before the disinfection period (B), after 60 days of disinfectant exposure (T 1), and after 120 days of disinfectant exposure (T 2). Color differences (ΔE) were calculated for the intervals between T 1 and B (T 1B), and between T 2 and B (T 2B). The data were evaluated by analysis of variance and the Tukey Honestly Significantly Different (α = 0.05). All disinfectant groups exhibited color changes. The mean color change observed for all groups overall during T 2B (ΔE = 3.51) was significantly greater than that observed during T 1B (ΔE = 2.10). All groups exhibited greater color change for the b* values when compared to the a* and L* values. There were no significant differences between the disinfectant groups. It can be concluded that the time period of disinfection and storage significantly affected the stability of artificial iris color, independent of the disinfectant used. © 2012 Wiley Periodicals, Inc.
Resumo:
The results of the present study showed a significant decrease in the number of E. coli in root canals (first collection) after irrigation with castor oil extract during biomechanical preparation. All medications tested in this study were able to eliminate E. coli in root canals; however, they could not neutralize endotoxins completely.
Resumo:
The aim of this study was to evaluate the effects of different irrigants on sealer-dentin bond strength when using Real Seal. Thirty single-rooted teeth were divided into 3 groups. In one group, the teeth were irrigated with 3 mL of 2.5% NaOCl after each file change, flushed with 17% EDTA for 3 min and finally rinsed with 3 mL of 2.5% NaOCl. In the other two groups, rinse with NaOCl was replaced with 2% chlorhexidine gluconate (CHX) and 0.9% saline, respectively. Each root was sectioned transversally into apical, middle and coronal thirds to obtain 2-mm-thick slices. Each slice was filled with Real Seal and Resilon. Push-out test was used to analyze bond strength and failure modes were classified as adhesive, cohesive or mixed, according to SEM observations. The push-out test did not reveal any statistically significant difference (p>0.05) between the irrigants. However, the groups exhibited significantly different (p<0.05) bond strengths in terms of the root canal third. Higher bond strength was observed at the apical third when compared with coronal third, while middle third presented intermediary values. Fifteen specimens were analyzed by SEM (5 per group). Eleven specimens exhibited adhesive failures (5 in saline, 4 in NaOCl and 2 in CHX group); 2 cohesive failures were observed in the CHX group, and 1 mixed failure each was observed in the CHX and NaOCl groups. The tested irrigants did not influence the bond strength of Resilon and Real Seal to dentin. The apical third exhibited higher mean bond strengths and adhesive failures were predominant.
Resumo:
The adhesion of Candida albicans to surfaces is the prerequisite for occurrence of denture stomatitis, a common disease diagnosed among denture wearers. A routine of denture cleansing is essential to prevent biofilm formation and the onset of this infection. The aim of this study was to investigate the effectiveness of combining brushing and cleansing agents in killing C. albicans biofilm. Disks of acrylic resin were made, sterilized, and inoculated with C. albicans (107 cfu/mL). After incubation (37°C/48 h), specimens were randomly assigned to 10 experimental groups (n=9): 5 subjected to brushing with distilled water or cleansing agents - dentifrice slurry, 2% chlorhexidine gluconate (CHX), 1% sodium hypochlorite (NaOCl), and Polident fresh cleanse® (combined method) - and 4 exposed to the cleansing agents without brushing (immersion). Non-cleansed specimens were used as positive controls. The viability of cells was evaluated by XTT reduction method. Results were analyzed by Mann-Whitney and Kruskal-Wallis tests (α=0.05). The combined method was significantly more effective (p<0.0001) in reducing biofilm viability than the immersion. Brushing with CHX and NaOCl resulted in 100% removal of the biofilm. Immersion in the agents reduced significantly (p<0.0001) the biofilm viability, with CHX being the most effective (p<0.0001). The use of the combined method of brushing with cleansing agents is an effective method to reduce C. albicans biofilm, being CHX and NaOCl the most effective solutions.
Resumo:
The aim of this study was to evaluate the hardness, roughness and mass loss of an acrylic denture base resin after in vitro exposure to four disinfectant solutions. Forty specimens (Clássico, Brazil) were prepared and randomly assigned to 4 groups n = 10) according to the disinfectant solution: G1: control, stored in distilled water at 37 degrees C; G2: 1% sodium hypochlorite; G3: 2% glutaraldehyde; G4: 4% chlorhexidine. G2 to G4 were immersed for 60 minutes in the disinfectant solution. Measurements were carried out both before and after immersion in the solution. The surface was analyzed with a surface roughness tester (Surfcorder SE 1700 KOZAKALAB), a microdurometer FM-700 (Future Tech) and a scanning electron microscope (DSM 962-ZEISS). Loss of mass was determined with a digital weighing scale. After disinfection procedures, values were analyzed statistically. The acrylic denture base resin may be vulnerable to surface changes after in vitro immersion in the disinfectant solutions studied.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Ocular prosthesis materials should have specific properties for their indication and durability; therefore, it is important to investigate their physical behaviour when affected by several disinfectants. Objectives: This study evaluated the influence of different disinfecting solutions on the microhardness and surface roughness of acrylic resins for ocular prosthesis. Materials and Methods: Fifty samples simulating ocular prostheses were fabricated with N1 resin and colourless resin and divided (n = 10) according to the disinfectant used: neutral soap, Opti-free, Efferdent, 1% hypochlorite (HYC) and 4% chlorhexidine (CHX). Samples were stored in saline solution at 37°C and disinfected during 120 days. Both microhardness and roughness were investigated before, after 60 days and 120 days of disinfection and storage. Microhardness was measured using a microhardner and the roughness with a roughness device. Results: N1 resin showed lower microhardness when compared with colourless resin (p < 0.05). HYC and CHX groups exhibited the highest change of microhardness and roughness values (p < 0.05). An increase in roughness and reduction in microhardness of ocular acrylic resins were observed after both periods of disinfection and storage (p < 0.05). Conclusion: Both disinfection/storage periods affected the microhardness and roughness values of the samples. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
Objective: The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecali's inoculated in root canals. Material and Methods: Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1) 2.5% sodium hypochlorite (NaOCl), G2) 2% chlorhexidine gel (CHX), G3) castor oil, G4) glycolic Aloe vera extract, g5) glycolic ginger extract, and G6) sterile saline (control). The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37°C for 48 hours. Results: The results were submitted to the Kruskal-Wallis and Dunn (5%) statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. Conclusion: It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity.
Resumo:
The peptide LYS-[TRP6]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK- NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37 °C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL-1). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes. © 2012 Elsevier Inc.
Resumo:
The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins. © 2013 Informa UK Ltd.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application ofthe Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success.
Resumo:
Objectives: The combination of sodium hypochlorite (NaOCl) and chlorhexidine (CHX) yields a precipitate potentially toxic (PPT). The aim of this study was to evaluate the tissue response to implanted polyethylene tubes filled with PPT-soaked fibrin sponge. Methods: Forty rats received four polyethylene tubes each; each tube was filled with fibrin sponge soaked by 2.5 % NaOCl, 2.0 % CHX, PPT (2.5 % NaOCl plus 2.0 % CHX), or not soaked (control). The observation time points were 7, 15, 30, 60, and 90 days. At each time point, eight animals were killed, and the tubes and surrounding tissues were removed, fixed, and prepared for light microscopic analysis by performing glycol methacrylate embedding, serial cutting into 3-μm sections, and hematoxylin-eosin staining. Qualitative and quantitative evaluations of the reactions were performed. Results were statistically analyzed by Kruskal-Wallis test (p < 0.05). Results: All chemical solutions caused moderate reactions at 7 days. On day 30, PPT group was more cytotoxic than the control group and the CHX group (p < 0.05). On days 15 and 60, PPT group was more cytotoxic than the control group (p < 0.05). On day 90, there was no statistically significant difference between the different groups. Conclusion: PPT is more cytotoxic than NaOCl and CHX alone, particularly in the short term. Clinical significance: Protocols which suggest the use of CHX and NaOCl must be revised because this mixture produces cytotoxic product. © 2013 Springer-Verlag Berlin Heidelberg.