924 resultados para binary vector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure is described that allows the simple identification and sorting of live human cells that transcribe actively the HIV virus, based on the detection of GFP fluorescence in cells. Using adenoviral vectors for gene transfer, an expression cassette including the HIV-1 LTR driving the reporter gene GFP was introduced into cells that expressed stably either the Tat transcriptional activator, or an inactive mutant of Tat. Both northern and fluorescence-activated cell sorting (FACS) analysis indicate that cells containing the functional Tat protein presented levels of GFP mRNA and GFP fluorescence several orders of magnitude higher than control cells. Correspondingly, cells infected with HIV-1 showed similar enhanced reporter gene activation. HIV-1-infected cells of the lymphocytic line Jurkat were easily identified by fluorescence-activated cell sorting (FACS) as they displayed a much higher green fluorescence after transduction with the reporter adenoviral vector. This procedure could also be applied on primary human cells as blood monocyte-derived macrophages exposed to the adenoviral LTR-GFP reporter presented a much higher fluorescence when infected with HIV-1 compared with HIV-uninfected cells. The vector described has the advantages of labelling cells independently of their proliferation status and that analysis can be carried on intact cells which can be isolated subsequently by fluorescence-activated cell sorting (FACS) for further culture. This work suggests that adenoviral vectors carrying a virus-specific transcriptional control element controlling the expressions of a fluorescent protein will be useful in the identification and isolation of cells transcribing actively the viral template, and to be of use for drug screening and susceptibility assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. In this paper, we focus on the prediction of drug concentrations using Support Vector Machines (S VM) and the analysis of the influence of each feature to the prediction results. Our study shows that SVM-based approaches achieve similar prediction results compared with pharmacokinetic model. The two proposed example-based SVM methods demonstrate that the individual features help to increase the accuracy in the predictions of drug concentration with a reduced library of training data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation of an ABV model. The dynamics consists of exchanges of particles with a small concentration of vacancies. The influence of changing the vacancy concentration and finite-size effects has been analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous character of the diffusion due to its correlation with local order is responsible for the obtained fast-growth behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo study of the late time growth of L12-ordered domains in a fcc A3B binary alloy is presented. The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancyatom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3Au and theories for anisotropic growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multiobject pattern recognition the height of the correlation peaks should be controlled when the power spectrum of ajoint transform correlator is binarized. In this paper a method to predetermine the value of detection peaks is demonstrated. The technique is based on a frequency-variant threshold in order to remove the intraclass terms and on a suitable factor to normalize the binary joint power spectrum. Digital simulations and experimental hybrid implementation of this method were carried out.