868 resultados para binary soliton
Resumo:
Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.
Resumo:
Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.
Resumo:
We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s(-1) and probably as large as 600 km s-1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 kms(-1) from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pc from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion, respectively.
Resumo:
The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
Context. NGC 346-013 is a peculiar double-lined eclipsing binary in the Small Magellanic Cloud (SMC) discovered by the VLT-FLAMES survey of massive stars.
Resumo:
For a better understanding of the adsorption behavior of alkylcarbonate-based electrolytes on graphite electrodes and Celgard separator for Li-ion batteries applications, the interface parameters are determined by contact angle and surface tension measurements. The correlation between these parameters and chemical compositions made of alkyl carbonate with a varying nature of lithium salts (LiPF6 and LiTFSI) and volume fractions of binary and ternary mixtures containing propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC) is investigated. From the obtained contact angle and surface tension (?L) values for each liquid, the dispersive and polar components of the surface tension (?Ld and ?Lp) of the electrolyte and interfacial free energy between the solid and liquid (?SL) were then calculated using the Young’s equation. The variation of contact angle (?) and the surface tension, as well as the work of adhesion (WA) of binary PC/DMC mixtures on PP, PE, and PET model surfaces were also measured and commented as function of volume fraction of PC in DMC. Finally, the Zisman’s critical surface tension (?C) for studied surfaces was then obtained showing positives slopes of cos ? versus ?L. This behavior is explained by a relative higher adsorption of alkylcarbonates to the hydrogenated supports or graphite. These results are decisive to understand the performance of electrolyte/electrode material/separator interfaces in lithium-ion battery devices.
Resumo:
We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.
Resumo:
We present an early result from an automated search of Kepler eclipsing binary systems for circumbinary companions. An intriguing tertiary signal has been discovered in the short period eclipsing binary KIC002856960. This third body leads to transit-like features in the light curve occurring every 204.2 days, while the two other components of the system display eclipses on a 6.2 hour period. The variations due to the tertiary body last for a duration of \sim1.26 days, or 4.9 binary orbital periods. During each crossing of the binary orbit with the tertiary body, multiple individual transits are observed as the close binary stars repeatedly move in and out of alignment with the tertiary object. We are at this stage unable to distinguish between a planetary companion to a close eclipsing binary, or a hierarchical triply eclipsing system of three stars. Both possibilities are explored, and the light curves presented.
Resumo:
This study highlights the potential associated with utilising multi-component polymeric gels to formulate materials that possess unique rheological and mechanical properties. The synergistic effect* and interaction between hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC), polymers which are commonly employed as drug delivery platforms for implantable medical devices (1), have been determined using dynamic, continuous shear and texture profile analysis. * The difference between the actual response of a binary mixture and the sum of the two components comprising the mixture Increases in polymer concentration resulted in an increase in G', G? and ?' whereas tan d decreased. Similarly, significant increases were also apparent in continuous shear and texture analysis. All binary mixtures showed positive synergy values which may suggest associative interaction between the two components.
Resumo:
Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.